f ( n + 1 ) d x = f ( n + 1 )
Solve for d (complex solution)
\left\{\begin{matrix}d=\frac{1}{x}\text{, }&x\neq 0\\d\in \mathrm{C}\text{, }&n=-1\text{ or }f=0\end{matrix}\right.
Solve for f (complex solution)
\left\{\begin{matrix}\\f=0\text{, }&\text{unconditionally}\\f\in \mathrm{C}\text{, }&\left(d=\frac{1}{x}\text{ and }x\neq 0\right)\text{ or }n=-1\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=\frac{1}{x}\text{, }&x\neq 0\\d\in \mathrm{R}\text{, }&n=-1\text{ or }f=0\end{matrix}\right.
Solve for f
\left\{\begin{matrix}\\f=0\text{, }&\text{unconditionally}\\f\in \mathrm{R}\text{, }&\left(d=\frac{1}{x}\text{ and }x\neq 0\right)\text{ or }n=-1\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(fn+f\right)dx=f\left(n+1\right)
Use the distributive property to multiply f by n+1.
\left(fnd+fd\right)x=f\left(n+1\right)
Use the distributive property to multiply fn+f by d.
fndx+fdx=f\left(n+1\right)
Use the distributive property to multiply fnd+fd by x.
fndx+fdx=fn+f
Use the distributive property to multiply f by n+1.
\left(fnx+fx\right)d=fn+f
Combine all terms containing d.
\frac{\left(fnx+fx\right)d}{fnx+fx}=\frac{fn+f}{fnx+fx}
Divide both sides by fnx+fx.
d=\frac{fn+f}{fnx+fx}
Dividing by fnx+fx undoes the multiplication by fnx+fx.
d=\frac{1}{x}
Divide fn+f by fnx+fx.
\left(fn+f\right)dx=f\left(n+1\right)
Use the distributive property to multiply f by n+1.
\left(fnd+fd\right)x=f\left(n+1\right)
Use the distributive property to multiply fn+f by d.
fndx+fdx=f\left(n+1\right)
Use the distributive property to multiply fnd+fd by x.
fndx+fdx=fn+f
Use the distributive property to multiply f by n+1.
fndx+fdx-fn=f
Subtract fn from both sides.
fndx+fdx-fn-f=0
Subtract f from both sides.
\left(ndx+dx-n-1\right)f=0
Combine all terms containing f.
\left(dnx+dx-n-1\right)f=0
The equation is in standard form.
f=0
Divide 0 by ndx+dx-n-1.
\left(fn+f\right)dx=f\left(n+1\right)
Use the distributive property to multiply f by n+1.
\left(fnd+fd\right)x=f\left(n+1\right)
Use the distributive property to multiply fn+f by d.
fndx+fdx=f\left(n+1\right)
Use the distributive property to multiply fnd+fd by x.
fndx+fdx=fn+f
Use the distributive property to multiply f by n+1.
\left(fnx+fx\right)d=fn+f
Combine all terms containing d.
\frac{\left(fnx+fx\right)d}{fnx+fx}=\frac{fn+f}{fnx+fx}
Divide both sides by fnx+fx.
d=\frac{fn+f}{fnx+fx}
Dividing by fnx+fx undoes the multiplication by fnx+fx.
d=\frac{1}{x}
Divide fn+f by fnx+fx.
\left(fn+f\right)dx=f\left(n+1\right)
Use the distributive property to multiply f by n+1.
\left(fnd+fd\right)x=f\left(n+1\right)
Use the distributive property to multiply fn+f by d.
fndx+fdx=f\left(n+1\right)
Use the distributive property to multiply fnd+fd by x.
fndx+fdx=fn+f
Use the distributive property to multiply f by n+1.
fndx+fdx-fn=f
Subtract fn from both sides.
fndx+fdx-fn-f=0
Subtract f from both sides.
\left(ndx+dx-n-1\right)f=0
Combine all terms containing f.
\left(dnx+dx-n-1\right)f=0
The equation is in standard form.
f=0
Divide 0 by ndx+dx-n-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}