Evaluate
\frac{35}{12}\approx 2.916666667
Factor
\frac{5 \cdot 7}{2 ^ {2} \cdot 3} = 2\frac{11}{12} = 2.9166666666666665
Share
Copied to clipboard
\frac{8+3}{4}-\frac{1\times 2+1}{2}-\left(-\frac{1\times 3+2}{3}\right)
Multiply 2 and 4 to get 8.
\frac{11}{4}-\frac{1\times 2+1}{2}-\left(-\frac{1\times 3+2}{3}\right)
Add 8 and 3 to get 11.
\frac{11}{4}-\frac{2+1}{2}-\left(-\frac{1\times 3+2}{3}\right)
Multiply 1 and 2 to get 2.
\frac{11}{4}-\frac{3}{2}-\left(-\frac{1\times 3+2}{3}\right)
Add 2 and 1 to get 3.
\frac{11}{4}-\frac{6}{4}-\left(-\frac{1\times 3+2}{3}\right)
Least common multiple of 4 and 2 is 4. Convert \frac{11}{4} and \frac{3}{2} to fractions with denominator 4.
\frac{11-6}{4}-\left(-\frac{1\times 3+2}{3}\right)
Since \frac{11}{4} and \frac{6}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{4}-\left(-\frac{1\times 3+2}{3}\right)
Subtract 6 from 11 to get 5.
\frac{5}{4}-\left(-\frac{3+2}{3}\right)
Multiply 1 and 3 to get 3.
\frac{5}{4}-\left(-\frac{5}{3}\right)
Add 3 and 2 to get 5.
\frac{5}{4}+\frac{5}{3}
The opposite of -\frac{5}{3} is \frac{5}{3}.
\frac{15}{12}+\frac{20}{12}
Least common multiple of 4 and 3 is 12. Convert \frac{5}{4} and \frac{5}{3} to fractions with denominator 12.
\frac{15+20}{12}
Since \frac{15}{12} and \frac{20}{12} have the same denominator, add them by adding their numerators.
\frac{35}{12}
Add 15 and 20 to get 35.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}