Solve for a (complex solution)
a\in \mathrm{C}
h\neq 0
Solve for f (complex solution)
f\in \mathrm{C}
h\neq 0
Solve for a
a\in \mathrm{R}
h\neq 0
Solve for f
f\in \mathrm{R}
h\neq 0
Quiz
Algebra
5 problems similar to:
f ( a + h ) - f ( a ) = \frac { f ( a + h ) - f ( a ) } { h } \cdot h
Share
Copied to clipboard
f\left(a+h\right)h-fah=\left(f\left(a+h\right)-fa\right)h
Multiply both sides of the equation by h.
\left(fa+fh\right)h-fah=\left(f\left(a+h\right)-fa\right)h
Use the distributive property to multiply f by a+h.
fah+fh^{2}-fah=\left(f\left(a+h\right)-fa\right)h
Use the distributive property to multiply fa+fh by h.
fh^{2}=\left(f\left(a+h\right)-fa\right)h
Combine fah and -fah to get 0.
fh^{2}=\left(fa+fh-fa\right)h
Use the distributive property to multiply f by a+h.
fh^{2}=fhh
Combine fa and -fa to get 0.
fh^{2}=fh^{2}
Multiply h and h to get h^{2}.
\text{true}
Reorder the terms.
a\in \mathrm{C}
This is true for any a.
f\left(a+h\right)h-fah=\left(f\left(a+h\right)-fa\right)h
Multiply both sides of the equation by h.
\left(fa+fh\right)h-fah=\left(f\left(a+h\right)-fa\right)h
Use the distributive property to multiply f by a+h.
fah+fh^{2}-fah=\left(f\left(a+h\right)-fa\right)h
Use the distributive property to multiply fa+fh by h.
fh^{2}=\left(f\left(a+h\right)-fa\right)h
Combine fah and -fah to get 0.
fh^{2}=\left(fa+fh-fa\right)h
Use the distributive property to multiply f by a+h.
fh^{2}=fhh
Combine fa and -fa to get 0.
fh^{2}=fh^{2}
Multiply h and h to get h^{2}.
fh^{2}-fh^{2}=0
Subtract fh^{2} from both sides.
0=0
Combine fh^{2} and -fh^{2} to get 0.
\text{true}
Compare 0 and 0.
f\in \mathrm{C}
This is true for any f.
f\left(a+h\right)h-fah=\left(f\left(a+h\right)-fa\right)h
Multiply both sides of the equation by h.
\left(fa+fh\right)h-fah=\left(f\left(a+h\right)-fa\right)h
Use the distributive property to multiply f by a+h.
fah+fh^{2}-fah=\left(f\left(a+h\right)-fa\right)h
Use the distributive property to multiply fa+fh by h.
fh^{2}=\left(f\left(a+h\right)-fa\right)h
Combine fah and -fah to get 0.
fh^{2}=\left(fa+fh-fa\right)h
Use the distributive property to multiply f by a+h.
fh^{2}=fhh
Combine fa and -fa to get 0.
fh^{2}=fh^{2}
Multiply h and h to get h^{2}.
\text{true}
Reorder the terms.
a\in \mathrm{R}
This is true for any a.
f\left(a+h\right)h-fah=\left(f\left(a+h\right)-fa\right)h
Multiply both sides of the equation by h.
\left(fa+fh\right)h-fah=\left(f\left(a+h\right)-fa\right)h
Use the distributive property to multiply f by a+h.
fah+fh^{2}-fah=\left(f\left(a+h\right)-fa\right)h
Use the distributive property to multiply fa+fh by h.
fh^{2}=\left(f\left(a+h\right)-fa\right)h
Combine fah and -fah to get 0.
fh^{2}=\left(fa+fh-fa\right)h
Use the distributive property to multiply f by a+h.
fh^{2}=fhh
Combine fa and -fa to get 0.
fh^{2}=fh^{2}
Multiply h and h to get h^{2}.
fh^{2}-fh^{2}=0
Subtract fh^{2} from both sides.
0=0
Combine fh^{2} and -fh^{2} to get 0.
\text{true}
Compare 0 and 0.
f\in \mathrm{R}
This is true for any f.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}