Solve for F
\left\{\begin{matrix}F=\frac{-4x^{2}+6x+af+fh-7}{a}\text{, }&a\neq 0\\F\in \mathrm{R}\text{, }&f=-\frac{-4x^{2}+6x-7}{h}\text{ and }a=0\text{ and }h\neq 0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{-4x^{2}+6x+fh-7}{f-F}\text{, }&f\neq F\\a\in \mathrm{R}\text{, }&f=\frac{4x^{2}-6x+7}{h}\text{ and }F=\frac{4x^{2}-6x+7}{h}\text{ and }h\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
fa+fh-Fa=7-6x+4x^{2}
Use the distributive property to multiply f by a+h.
fh-Fa=7-6x+4x^{2}-fa
Subtract fa from both sides.
-Fa=7-6x+4x^{2}-fa-fh
Subtract fh from both sides.
\left(-a\right)F=4x^{2}-6x-af-fh+7
The equation is in standard form.
\frac{\left(-a\right)F}{-a}=\frac{4x^{2}-6x-af-fh+7}{-a}
Divide both sides by -a.
F=\frac{4x^{2}-6x-af-fh+7}{-a}
Dividing by -a undoes the multiplication by -a.
F=-\frac{4x^{2}-6x-af-fh+7}{a}
Divide 7-6x+4x^{2}-fa-fh by -a.
fa+fh-Fa=7-6x+4x^{2}
Use the distributive property to multiply f by a+h.
fa-Fa=7-6x+4x^{2}-fh
Subtract fh from both sides.
\left(f-F\right)a=7-6x+4x^{2}-fh
Combine all terms containing a.
\left(f-F\right)a=4x^{2}-6x-fh+7
The equation is in standard form.
\frac{\left(f-F\right)a}{f-F}=\frac{4x^{2}-6x-fh+7}{f-F}
Divide both sides by f-F.
a=\frac{4x^{2}-6x-fh+7}{f-F}
Dividing by f-F undoes the multiplication by f-F.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}