f ( 1000 ( 1 + x ) - 500 ] ( 1 + x ) = 660
Solve for f
f=\frac{33}{25\left(x+1\right)\left(2x+1\right)}
x\neq -\frac{1}{2}\text{ and }x\neq -1
Solve for x (complex solution)
x=\frac{\sqrt{25f^{2}+264f}}{20f}-\frac{3}{4}
x=-\frac{\sqrt{25f^{2}+264f}}{20f}-\frac{3}{4}\text{, }f\neq 0
Solve for x
x=\frac{\sqrt{25f^{2}+264f}}{20f}-\frac{3}{4}
x=-\frac{\sqrt{25f^{2}+264f}}{20f}-\frac{3}{4}\text{, }f>0\text{ or }f\leq -\frac{264}{25}
Graph
Share
Copied to clipboard
f\left(1000+1000x-500\right)\left(1+x\right)=660
Use the distributive property to multiply 1000 by 1+x.
f\left(500+1000x\right)\left(1+x\right)=660
Subtract 500 from 1000 to get 500.
\left(500f+1000fx\right)\left(1+x\right)=660
Use the distributive property to multiply f by 500+1000x.
500f+1500fx+1000fx^{2}=660
Use the distributive property to multiply 500f+1000fx by 1+x and combine like terms.
\left(500+1500x+1000x^{2}\right)f=660
Combine all terms containing f.
\left(1000x^{2}+1500x+500\right)f=660
The equation is in standard form.
\frac{\left(1000x^{2}+1500x+500\right)f}{1000x^{2}+1500x+500}=\frac{660}{1000x^{2}+1500x+500}
Divide both sides by 500+1500x+1000x^{2}.
f=\frac{660}{1000x^{2}+1500x+500}
Dividing by 500+1500x+1000x^{2} undoes the multiplication by 500+1500x+1000x^{2}.
f=\frac{33}{25\left(x+1\right)\left(2x+1\right)}
Divide 660 by 500+1500x+1000x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}