Solve for a
a=\frac{3\sqrt{5}-9}{2}\approx -1.145898034
a=\frac{-3\sqrt{5}-9}{2}\approx -7.854101966
Share
Copied to clipboard
a\times 9+a^{2}-3+18=6
Calculate -3 to the power of 2 and get 9.
a\times 9+a^{2}+15=6
Add -3 and 18 to get 15.
a\times 9+a^{2}+15-6=0
Subtract 6 from both sides.
a\times 9+a^{2}+9=0
Subtract 6 from 15 to get 9.
a^{2}+9a+9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-9±\sqrt{9^{2}-4\times 9}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 9 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-9±\sqrt{81-4\times 9}}{2}
Square 9.
a=\frac{-9±\sqrt{81-36}}{2}
Multiply -4 times 9.
a=\frac{-9±\sqrt{45}}{2}
Add 81 to -36.
a=\frac{-9±3\sqrt{5}}{2}
Take the square root of 45.
a=\frac{3\sqrt{5}-9}{2}
Now solve the equation a=\frac{-9±3\sqrt{5}}{2} when ± is plus. Add -9 to 3\sqrt{5}.
a=\frac{-3\sqrt{5}-9}{2}
Now solve the equation a=\frac{-9±3\sqrt{5}}{2} when ± is minus. Subtract 3\sqrt{5} from -9.
a=\frac{3\sqrt{5}-9}{2} a=\frac{-3\sqrt{5}-9}{2}
The equation is now solved.
a\times 9+a^{2}-3+18=6
Calculate -3 to the power of 2 and get 9.
a\times 9+a^{2}+15=6
Add -3 and 18 to get 15.
a\times 9+a^{2}=6-15
Subtract 15 from both sides.
a\times 9+a^{2}=-9
Subtract 15 from 6 to get -9.
a^{2}+9a=-9
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
a^{2}+9a+\left(\frac{9}{2}\right)^{2}=-9+\left(\frac{9}{2}\right)^{2}
Divide 9, the coefficient of the x term, by 2 to get \frac{9}{2}. Then add the square of \frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+9a+\frac{81}{4}=-9+\frac{81}{4}
Square \frac{9}{2} by squaring both the numerator and the denominator of the fraction.
a^{2}+9a+\frac{81}{4}=\frac{45}{4}
Add -9 to \frac{81}{4}.
\left(a+\frac{9}{2}\right)^{2}=\frac{45}{4}
Factor a^{2}+9a+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{9}{2}\right)^{2}}=\sqrt{\frac{45}{4}}
Take the square root of both sides of the equation.
a+\frac{9}{2}=\frac{3\sqrt{5}}{2} a+\frac{9}{2}=-\frac{3\sqrt{5}}{2}
Simplify.
a=\frac{3\sqrt{5}-9}{2} a=\frac{-3\sqrt{5}-9}{2}
Subtract \frac{9}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}