f ( - \frac { 1 } { 3 } ) = \frac { 3 ( - \frac { 1 } { 3 } - 1 } { 2 ( - \frac { 1 } { 3 } ) + 1 }
Solve for f
f=36
Share
Copied to clipboard
f\left(-\frac{1}{3}\right)=\frac{3\left(-\frac{1}{3}-\frac{3}{3}\right)}{2\left(-\frac{1}{3}\right)+1}
Convert 1 to fraction \frac{3}{3}.
f\left(-\frac{1}{3}\right)=\frac{3\times \frac{-1-3}{3}}{2\left(-\frac{1}{3}\right)+1}
Since -\frac{1}{3} and \frac{3}{3} have the same denominator, subtract them by subtracting their numerators.
f\left(-\frac{1}{3}\right)=\frac{3\left(-\frac{4}{3}\right)}{2\left(-\frac{1}{3}\right)+1}
Subtract 3 from -1 to get -4.
f\left(-\frac{1}{3}\right)=\frac{-4}{2\left(-\frac{1}{3}\right)+1}
Cancel out 3 and 3.
f\left(-\frac{1}{3}\right)=\frac{-4}{\frac{2\left(-1\right)}{3}+1}
Express 2\left(-\frac{1}{3}\right) as a single fraction.
f\left(-\frac{1}{3}\right)=\frac{-4}{\frac{-2}{3}+1}
Multiply 2 and -1 to get -2.
f\left(-\frac{1}{3}\right)=\frac{-4}{-\frac{2}{3}+1}
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
f\left(-\frac{1}{3}\right)=\frac{-4}{-\frac{2}{3}+\frac{3}{3}}
Convert 1 to fraction \frac{3}{3}.
f\left(-\frac{1}{3}\right)=\frac{-4}{\frac{-2+3}{3}}
Since -\frac{2}{3} and \frac{3}{3} have the same denominator, add them by adding their numerators.
f\left(-\frac{1}{3}\right)=\frac{-4}{\frac{1}{3}}
Add -2 and 3 to get 1.
f\left(-\frac{1}{3}\right)=-4\times 3
Divide -4 by \frac{1}{3} by multiplying -4 by the reciprocal of \frac{1}{3}.
f\left(-\frac{1}{3}\right)=-12
Multiply -4 and 3 to get -12.
f=-12\left(-3\right)
Multiply both sides by -3, the reciprocal of -\frac{1}{3}.
f=36
Multiply -12 and -3 to get 36.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}