Evaluate
-\frac{3f^{2}}{2}
Differentiate w.r.t. f
-3f
Share
Copied to clipboard
f^{2}\left(-\frac{1}{2}\right)\times 3+0
Multiply f and f to get f^{2}.
f^{2}\times \frac{-3}{2}+0
Express -\frac{1}{2}\times 3 as a single fraction.
f^{2}\left(-\frac{3}{2}\right)+0
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
f^{2}\left(-\frac{3}{2}\right)
Anything plus zero gives itself.
\frac{\mathrm{d}}{\mathrm{d}f}(f^{2}\left(-\frac{1}{2}\right)\times 3+0)
Multiply f and f to get f^{2}.
\frac{\mathrm{d}}{\mathrm{d}f}(f^{2}\times \frac{-3}{2}+0)
Express -\frac{1}{2}\times 3 as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}f}(f^{2}\left(-\frac{3}{2}\right)+0)
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
\frac{\mathrm{d}}{\mathrm{d}f}(f^{2}\left(-\frac{3}{2}\right))
Anything plus zero gives itself.
2\left(-\frac{3}{2}\right)f^{2-1}
The derivative of ax^{n} is nax^{n-1}.
-3f^{2-1}
Multiply 2 times -\frac{3}{2}.
-3f^{1}
Subtract 1 from 2.
-3f
For any term t, t^{1}=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}