Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. f
Tick mark Image

Similar Problems from Web Search

Share

f^{2}\left(-\frac{1}{2}\right)\times 3+0
Multiply f and f to get f^{2}.
f^{2}\times \frac{-3}{2}+0
Express -\frac{1}{2}\times 3 as a single fraction.
f^{2}\left(-\frac{3}{2}\right)+0
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
f^{2}\left(-\frac{3}{2}\right)
Anything plus zero gives itself.
\frac{\mathrm{d}}{\mathrm{d}f}(f^{2}\left(-\frac{1}{2}\right)\times 3+0)
Multiply f and f to get f^{2}.
\frac{\mathrm{d}}{\mathrm{d}f}(f^{2}\times \frac{-3}{2}+0)
Express -\frac{1}{2}\times 3 as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}f}(f^{2}\left(-\frac{3}{2}\right)+0)
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
\frac{\mathrm{d}}{\mathrm{d}f}(f^{2}\left(-\frac{3}{2}\right))
Anything plus zero gives itself.
2\left(-\frac{3}{2}\right)f^{2-1}
The derivative of ax^{n} is nax^{n-1}.
-3f^{2-1}
Multiply 2 times -\frac{3}{2}.
-3f^{1}
Subtract 1 from 2.
-3f
For any term t, t^{1}=t.