Evaluate
\frac{8f^{4}+41f^{3}-24f^{2}+90f-225}{\left(f+5\right)\left(f-5\right)^{2}}
Expand
\frac{8f^{4}+41f^{3}-24f^{2}+90f-225}{\left(f+5\right)\left(f^{2}-10f+25\right)}
Share
Copied to clipboard
\frac{f\left(8f^{2}-5\right)}{f^{2}-10f+25}-\frac{9-f}{f+5}
Express f\times \frac{8f^{2}-5}{f^{2}-10f+25} as a single fraction.
\frac{f\left(8f^{2}-5\right)}{\left(f-5\right)^{2}}-\frac{9-f}{f+5}
Factor f^{2}-10f+25.
\frac{f\left(8f^{2}-5\right)\left(f+5\right)}{\left(f+5\right)\left(f-5\right)^{2}}-\frac{\left(9-f\right)\left(f-5\right)^{2}}{\left(f+5\right)\left(f-5\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(f-5\right)^{2} and f+5 is \left(f+5\right)\left(f-5\right)^{2}. Multiply \frac{f\left(8f^{2}-5\right)}{\left(f-5\right)^{2}} times \frac{f+5}{f+5}. Multiply \frac{9-f}{f+5} times \frac{\left(f-5\right)^{2}}{\left(f-5\right)^{2}}.
\frac{f\left(8f^{2}-5\right)\left(f+5\right)-\left(9-f\right)\left(f-5\right)^{2}}{\left(f+5\right)\left(f-5\right)^{2}}
Since \frac{f\left(8f^{2}-5\right)\left(f+5\right)}{\left(f+5\right)\left(f-5\right)^{2}} and \frac{\left(9-f\right)\left(f-5\right)^{2}}{\left(f+5\right)\left(f-5\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{8f^{4}+40f^{3}-5f^{2}-25f-9f^{2}+90f-225+f^{3}-10f^{2}+25f}{\left(f+5\right)\left(f-5\right)^{2}}
Do the multiplications in f\left(8f^{2}-5\right)\left(f+5\right)-\left(9-f\right)\left(f-5\right)^{2}.
\frac{8f^{4}+41f^{3}-24f^{2}+90f-225}{\left(f+5\right)\left(f-5\right)^{2}}
Combine like terms in 8f^{4}+40f^{3}-5f^{2}-25f-9f^{2}+90f-225+f^{3}-10f^{2}+25f.
\frac{8f^{4}+41f^{3}-24f^{2}+90f-225}{f^{3}-5f^{2}-25f+125}
Expand \left(f+5\right)\left(f-5\right)^{2}.
\frac{f\left(8f^{2}-5\right)}{f^{2}-10f+25}-\frac{9-f}{f+5}
Express f\times \frac{8f^{2}-5}{f^{2}-10f+25} as a single fraction.
\frac{f\left(8f^{2}-5\right)}{\left(f-5\right)^{2}}-\frac{9-f}{f+5}
Factor f^{2}-10f+25.
\frac{f\left(8f^{2}-5\right)\left(f+5\right)}{\left(f+5\right)\left(f-5\right)^{2}}-\frac{\left(9-f\right)\left(f-5\right)^{2}}{\left(f+5\right)\left(f-5\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(f-5\right)^{2} and f+5 is \left(f+5\right)\left(f-5\right)^{2}. Multiply \frac{f\left(8f^{2}-5\right)}{\left(f-5\right)^{2}} times \frac{f+5}{f+5}. Multiply \frac{9-f}{f+5} times \frac{\left(f-5\right)^{2}}{\left(f-5\right)^{2}}.
\frac{f\left(8f^{2}-5\right)\left(f+5\right)-\left(9-f\right)\left(f-5\right)^{2}}{\left(f+5\right)\left(f-5\right)^{2}}
Since \frac{f\left(8f^{2}-5\right)\left(f+5\right)}{\left(f+5\right)\left(f-5\right)^{2}} and \frac{\left(9-f\right)\left(f-5\right)^{2}}{\left(f+5\right)\left(f-5\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{8f^{4}+40f^{3}-5f^{2}-25f-9f^{2}+90f-225+f^{3}-10f^{2}+25f}{\left(f+5\right)\left(f-5\right)^{2}}
Do the multiplications in f\left(8f^{2}-5\right)\left(f+5\right)-\left(9-f\right)\left(f-5\right)^{2}.
\frac{8f^{4}+41f^{3}-24f^{2}+90f-225}{\left(f+5\right)\left(f-5\right)^{2}}
Combine like terms in 8f^{4}+40f^{3}-5f^{2}-25f-9f^{2}+90f-225+f^{3}-10f^{2}+25f.
\frac{8f^{4}+41f^{3}-24f^{2}+90f-225}{f^{3}-5f^{2}-25f+125}
Expand \left(f+5\right)\left(f-5\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}