Solve for a
a=-\frac{fx-2x+2b}{f}
x\neq b\text{ and }f\neq 0
Solve for b
b=-\frac{af}{2}-\frac{fx}{2}+x
x\neq -a\text{ and }f\neq 0
Graph
Share
Copied to clipboard
f\left(x+a\right)=2\left(x-b\right)
Multiply both sides of the equation by x-b.
fx+fa=2\left(x-b\right)
Use the distributive property to multiply f by x+a.
fx+fa=2x-2b
Use the distributive property to multiply 2 by x-b.
fa=2x-2b-fx
Subtract fx from both sides.
fa=-fx+2x-2b
The equation is in standard form.
\frac{fa}{f}=\frac{-fx+2x-2b}{f}
Divide both sides by f.
a=\frac{-fx+2x-2b}{f}
Dividing by f undoes the multiplication by f.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}