Solve for f
f=-\frac{3\left(4y-7x\right)}{4\left(3x-5y\right)}
x\neq \frac{5y}{3}\text{ and }x\neq \frac{4y}{7}
Solve for x
\left\{\begin{matrix}x=-\frac{4y\left(3-5f\right)}{3\left(4f-7\right)}\text{, }&f\neq 0\text{ and }y\neq 0\text{ and }f\neq \frac{7}{4}\\x\neq 0\text{, }&y=0\text{ and }f=\frac{7}{4}\end{matrix}\right.
Graph
Share
Copied to clipboard
f\left(-4\right)\left(3x-5y\right)=3\left(-7x+4y\right)
Multiply both sides of the equation by 4\left(-7x+4y\right), the least common multiple of 7x-4y,4.
-12fx+20fy=3\left(-7x+4y\right)
Use the distributive property to multiply f\left(-4\right) by 3x-5y.
-12fx+20fy=-21x+12y
Use the distributive property to multiply 3 by -7x+4y.
\left(-12x+20y\right)f=-21x+12y
Combine all terms containing f.
\left(20y-12x\right)f=12y-21x
The equation is in standard form.
\frac{\left(20y-12x\right)f}{20y-12x}=\frac{12y-21x}{20y-12x}
Divide both sides by -12x+20y.
f=\frac{12y-21x}{20y-12x}
Dividing by -12x+20y undoes the multiplication by -12x+20y.
f=\frac{3\left(4y-7x\right)}{4\left(5y-3x\right)}
Divide -21x+12y by -12x+20y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}