Solve for f (complex solution)
\left\{\begin{matrix}f=-\frac{\sqrt{3}\sin(\theta )-2r}{\cos(\theta )}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\\f\in \mathrm{C}\text{, }&r=\frac{\sqrt{3}\sin(\theta )}{2}\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\theta =\frac{\pi \left(2n_{1}+1\right)}{2}\end{matrix}\right.
Solve for r
r=\frac{f\cos(\theta )+\sqrt{3}\sin(\theta )}{2}
Share
Copied to clipboard
f\cos(\theta )=2r-\sqrt{3}\sin(\theta )
Subtract \sqrt{3}\sin(\theta ) from both sides.
\cos(\theta )f=-\sqrt{3}\sin(\theta )+2r
The equation is in standard form.
\frac{\cos(\theta )f}{\cos(\theta )}=\frac{-\sqrt{3}\sin(\theta )+2r}{\cos(\theta )}
Divide both sides by \cos(\theta ).
f=\frac{-\sqrt{3}\sin(\theta )+2r}{\cos(\theta )}
Dividing by \cos(\theta ) undoes the multiplication by \cos(\theta ).
2r=f\cos(\theta )+\sqrt{3}\sin(\theta )
Swap sides so that all variable terms are on the left hand side.
\frac{2r}{2}=\frac{f\cos(\theta )+\sqrt{3}\sin(\theta )}{2}
Divide both sides by 2.
r=\frac{f\cos(\theta )+\sqrt{3}\sin(\theta )}{2}
Dividing by 2 undoes the multiplication by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}