Solve for f (complex solution)
\left\{\begin{matrix}f=\frac{\sqrt{\alpha }\left(\alpha ^{\frac{7}{2}}+2\alpha ^{\frac{3}{2}}+1\right)\left(-\alpha ^{4}-2\alpha ^{2}+\sqrt{\alpha }-2\right)}{y}\text{, }&y\neq 0\\f\in \mathrm{C}\text{, }&\left(-\left(\alpha ^{2}+1\right)^{2}+\sqrt{\alpha }-1\right)\left(\left(\alpha ^{2}+1\right)^{2}+\sqrt{\alpha }-1\right)=0\text{ and }y=0\end{matrix}\right.
Solve for y (complex solution)
\left\{\begin{matrix}y=\frac{\sqrt{\alpha }\left(\alpha ^{\frac{7}{2}}+2\alpha ^{\frac{3}{2}}+1\right)\left(-\alpha ^{4}-2\alpha ^{2}+\sqrt{\alpha }-2\right)}{f}\text{, }&f\neq 0\\y\in \mathrm{C}\text{, }&\left(-\left(\alpha ^{2}+1\right)^{2}+\sqrt{\alpha }-1\right)\left(\left(\alpha ^{2}+1\right)^{2}+\sqrt{\alpha }-1\right)=0\text{ and }f=0\end{matrix}\right.
Solve for f
\left\{\begin{matrix}f=\frac{\sqrt{\alpha }\left(\alpha ^{\frac{7}{2}}+2\alpha ^{\frac{3}{2}}+1\right)\left(-\alpha ^{4}-2\alpha ^{2}+\sqrt{\alpha }-2\right)}{y}\text{, }&y\neq 0\text{ and }\alpha \geq 0\\f\in \mathrm{R}\text{, }&0=-\left(\alpha ^{2}+1\right)^{4}+\alpha -2\sqrt{\alpha }+1\text{ and }\alpha \geq 0\text{ and }y=0\end{matrix}\right.
Solve for y
\left\{\begin{matrix}y=\frac{\sqrt{\alpha }\left(\alpha ^{\frac{7}{2}}+2\alpha ^{\frac{3}{2}}+1\right)\left(-\alpha ^{4}-2\alpha ^{2}+\sqrt{\alpha }-2\right)}{f}\text{, }&f\neq 0\text{ and }\alpha \geq 0\\y\in \mathrm{R}\text{, }&0=-\left(\alpha ^{2}+1\right)^{4}+\alpha -2\sqrt{\alpha }+1\text{ and }\alpha \geq 0\text{ and }f=0\end{matrix}\right.
Graph
Share
Copied to clipboard
fy=\left(\sqrt{\alpha }\right)^{2}-2\sqrt{\alpha }+1-\left(\alpha ^{2}+1\right)^{4}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{\alpha }-1\right)^{2}.
fy=\alpha -2\sqrt{\alpha }+1-\left(\alpha ^{2}+1\right)^{4}
Calculate \sqrt{\alpha } to the power of 2 and get \alpha .
fy=-\left(\alpha ^{2}+1\right)^{4}+\alpha -2\sqrt{\alpha }+1
Reorder the terms.
yf=-\left(\alpha ^{2}+1\right)^{4}+\alpha -2\sqrt{\alpha }+1
The equation is in standard form.
\frac{yf}{y}=\frac{-\left(\alpha ^{2}+1\right)^{4}+\left(\sqrt{\alpha }-1\right)^{2}}{y}
Divide both sides by y.
f=\frac{-\left(\alpha ^{2}+1\right)^{4}+\left(\sqrt{\alpha }-1\right)^{2}}{y}
Dividing by y undoes the multiplication by y.
f=\frac{\sqrt{\alpha }\left(\alpha ^{\frac{7}{2}}+2\alpha ^{\frac{3}{2}}+1\right)\left(-\alpha ^{4}-2\alpha ^{2}+\sqrt{\alpha }-2\right)}{y}
Divide -\left(\alpha ^{2}+1\right)^{4}+\left(\sqrt{\alpha }-1\right)^{2} by y.
fy=\left(\sqrt{\alpha }\right)^{2}-2\sqrt{\alpha }+1-\left(\alpha ^{2}+1\right)^{4}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{\alpha }-1\right)^{2}.
fy=\alpha -2\sqrt{\alpha }+1-\left(\alpha ^{2}+1\right)^{4}
Calculate \sqrt{\alpha } to the power of 2 and get \alpha .
fy=-\left(\alpha ^{2}+1\right)^{4}+\alpha -2\sqrt{\alpha }+1
Reorder the terms.
\frac{fy}{f}=\frac{-\left(\alpha ^{2}+1\right)^{4}+\left(\sqrt{\alpha }-1\right)^{2}}{f}
Divide both sides by f.
y=\frac{-\left(\alpha ^{2}+1\right)^{4}+\left(\sqrt{\alpha }-1\right)^{2}}{f}
Dividing by f undoes the multiplication by f.
y=\frac{\sqrt{\alpha }\left(\alpha ^{\frac{7}{2}}+2\alpha ^{\frac{3}{2}}+1\right)\left(-\alpha ^{4}-2\alpha ^{2}+\sqrt{\alpha }-2\right)}{f}
Divide -\left(\alpha ^{2}+1\right)^{4}+\left(\sqrt{\alpha }-1\right)^{2} by f.
fy=\left(\sqrt{\alpha }\right)^{2}-2\sqrt{\alpha }+1-\left(\alpha ^{2}+1\right)^{4}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{\alpha }-1\right)^{2}.
fy=\alpha -2\sqrt{\alpha }+1-\left(\alpha ^{2}+1\right)^{4}
Calculate \sqrt{\alpha } to the power of 2 and get \alpha .
fy=-\left(\alpha ^{2}+1\right)^{4}+\alpha -2\sqrt{\alpha }+1
Reorder the terms.
yf=-\left(\alpha ^{2}+1\right)^{4}+\alpha -2\sqrt{\alpha }+1
The equation is in standard form.
\frac{yf}{y}=\frac{-\left(\alpha ^{2}+1\right)^{4}+\left(\sqrt{\alpha }-1\right)^{2}}{y}
Divide both sides by y.
f=\frac{-\left(\alpha ^{2}+1\right)^{4}+\left(\sqrt{\alpha }-1\right)^{2}}{y}
Dividing by y undoes the multiplication by y.
f=\frac{\sqrt{\alpha }\left(\alpha ^{\frac{7}{2}}+2\alpha ^{\frac{3}{2}}+1\right)\left(-\alpha ^{4}-2\alpha ^{2}+\sqrt{\alpha }-2\right)}{y}
Divide -\left(\alpha ^{2}+1\right)^{4}+\left(\sqrt{\alpha }-1\right)^{2} by y.
fy=\left(\sqrt{\alpha }\right)^{2}-2\sqrt{\alpha }+1-\left(\alpha ^{2}+1\right)^{4}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{\alpha }-1\right)^{2}.
fy=\alpha -2\sqrt{\alpha }+1-\left(\alpha ^{2}+1\right)^{4}
Calculate \sqrt{\alpha } to the power of 2 and get \alpha .
fy=-\left(\alpha ^{2}+1\right)^{4}+\alpha -2\sqrt{\alpha }+1
Reorder the terms.
\frac{fy}{f}=\frac{-\left(\alpha ^{2}+1\right)^{4}+\left(\sqrt{\alpha }-1\right)^{2}}{f}
Divide both sides by f.
y=\frac{-\left(\alpha ^{2}+1\right)^{4}+\left(\sqrt{\alpha }-1\right)^{2}}{f}
Dividing by f undoes the multiplication by f.
y=\frac{\sqrt{\alpha }\left(\alpha ^{\frac{7}{2}}+2\alpha ^{\frac{3}{2}}+1\right)\left(-\alpha ^{4}-2\alpha ^{2}+\sqrt{\alpha }-2\right)}{f}
Divide -\left(\alpha ^{2}+1\right)^{4}+\left(\sqrt{\alpha }-1\right)^{2} by f.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}