Skip to main content
Solve for f (complex solution)
Tick mark Image
Solve for y (complex solution)
Tick mark Image
Solve for f
Tick mark Image
Solve for y
Tick mark Image
Graph

Share

fy=\left(\sqrt{\alpha }\right)^{2}-2\sqrt{\alpha }+1-\left(\alpha ^{2}+1\right)^{4}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{\alpha }-1\right)^{2}.
fy=\alpha -2\sqrt{\alpha }+1-\left(\alpha ^{2}+1\right)^{4}
Calculate \sqrt{\alpha } to the power of 2 and get \alpha .
fy=-\left(\alpha ^{2}+1\right)^{4}+\alpha -2\sqrt{\alpha }+1
Reorder the terms.
yf=-\left(\alpha ^{2}+1\right)^{4}+\alpha -2\sqrt{\alpha }+1
The equation is in standard form.
\frac{yf}{y}=\frac{-\left(\alpha ^{2}+1\right)^{4}+\left(\sqrt{\alpha }-1\right)^{2}}{y}
Divide both sides by y.
f=\frac{-\left(\alpha ^{2}+1\right)^{4}+\left(\sqrt{\alpha }-1\right)^{2}}{y}
Dividing by y undoes the multiplication by y.
f=\frac{\sqrt{\alpha }\left(\alpha ^{\frac{7}{2}}+2\alpha ^{\frac{3}{2}}+1\right)\left(-\alpha ^{4}-2\alpha ^{2}+\sqrt{\alpha }-2\right)}{y}
Divide -\left(\alpha ^{2}+1\right)^{4}+\left(\sqrt{\alpha }-1\right)^{2} by y.
fy=\left(\sqrt{\alpha }\right)^{2}-2\sqrt{\alpha }+1-\left(\alpha ^{2}+1\right)^{4}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{\alpha }-1\right)^{2}.
fy=\alpha -2\sqrt{\alpha }+1-\left(\alpha ^{2}+1\right)^{4}
Calculate \sqrt{\alpha } to the power of 2 and get \alpha .
fy=-\left(\alpha ^{2}+1\right)^{4}+\alpha -2\sqrt{\alpha }+1
Reorder the terms.
\frac{fy}{f}=\frac{-\left(\alpha ^{2}+1\right)^{4}+\left(\sqrt{\alpha }-1\right)^{2}}{f}
Divide both sides by f.
y=\frac{-\left(\alpha ^{2}+1\right)^{4}+\left(\sqrt{\alpha }-1\right)^{2}}{f}
Dividing by f undoes the multiplication by f.
y=\frac{\sqrt{\alpha }\left(\alpha ^{\frac{7}{2}}+2\alpha ^{\frac{3}{2}}+1\right)\left(-\alpha ^{4}-2\alpha ^{2}+\sqrt{\alpha }-2\right)}{f}
Divide -\left(\alpha ^{2}+1\right)^{4}+\left(\sqrt{\alpha }-1\right)^{2} by f.
fy=\left(\sqrt{\alpha }\right)^{2}-2\sqrt{\alpha }+1-\left(\alpha ^{2}+1\right)^{4}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{\alpha }-1\right)^{2}.
fy=\alpha -2\sqrt{\alpha }+1-\left(\alpha ^{2}+1\right)^{4}
Calculate \sqrt{\alpha } to the power of 2 and get \alpha .
fy=-\left(\alpha ^{2}+1\right)^{4}+\alpha -2\sqrt{\alpha }+1
Reorder the terms.
yf=-\left(\alpha ^{2}+1\right)^{4}+\alpha -2\sqrt{\alpha }+1
The equation is in standard form.
\frac{yf}{y}=\frac{-\left(\alpha ^{2}+1\right)^{4}+\left(\sqrt{\alpha }-1\right)^{2}}{y}
Divide both sides by y.
f=\frac{-\left(\alpha ^{2}+1\right)^{4}+\left(\sqrt{\alpha }-1\right)^{2}}{y}
Dividing by y undoes the multiplication by y.
f=\frac{\sqrt{\alpha }\left(\alpha ^{\frac{7}{2}}+2\alpha ^{\frac{3}{2}}+1\right)\left(-\alpha ^{4}-2\alpha ^{2}+\sqrt{\alpha }-2\right)}{y}
Divide -\left(\alpha ^{2}+1\right)^{4}+\left(\sqrt{\alpha }-1\right)^{2} by y.
fy=\left(\sqrt{\alpha }\right)^{2}-2\sqrt{\alpha }+1-\left(\alpha ^{2}+1\right)^{4}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{\alpha }-1\right)^{2}.
fy=\alpha -2\sqrt{\alpha }+1-\left(\alpha ^{2}+1\right)^{4}
Calculate \sqrt{\alpha } to the power of 2 and get \alpha .
fy=-\left(\alpha ^{2}+1\right)^{4}+\alpha -2\sqrt{\alpha }+1
Reorder the terms.
\frac{fy}{f}=\frac{-\left(\alpha ^{2}+1\right)^{4}+\left(\sqrt{\alpha }-1\right)^{2}}{f}
Divide both sides by f.
y=\frac{-\left(\alpha ^{2}+1\right)^{4}+\left(\sqrt{\alpha }-1\right)^{2}}{f}
Dividing by f undoes the multiplication by f.
y=\frac{\sqrt{\alpha }\left(\alpha ^{\frac{7}{2}}+2\alpha ^{\frac{3}{2}}+1\right)\left(-\alpha ^{4}-2\alpha ^{2}+\sqrt{\alpha }-2\right)}{f}
Divide -\left(\alpha ^{2}+1\right)^{4}+\left(\sqrt{\alpha }-1\right)^{2} by f.