Solve for f
f=\left(\frac{|\cosh(x)|}{|x|}\right)^{-\frac{Im(v)+iRe(v)}{\left(Re(v)\right)^{2}+\left(Im(v)\right)^{2}}}e^{\frac{Re(v)arg(\frac{\cosh(x)}{x})-iIm(v)arg(\frac{\cosh(x)}{x})}{\left(Re(v)\right)^{2}+\left(Im(v)\right)^{2}}+\frac{i\times 2\pi n_{1}Im(v)}{\left(Re(v)\right)^{2}+\left(Im(v)\right)^{2}}-\frac{2\pi n_{1}Re(v)}{\left(Re(v)\right)^{2}+\left(Im(v)\right)^{2}}}
n_{1}\in \mathrm{Z}
x\neq 0
Solve for v
\left\{\begin{matrix}v=-i\log_{f}\left(\frac{\cosh(x)}{x}\right)+\frac{2\pi n_{1}}{\ln(f)}\text{, }n_{1}\in \mathrm{Z}\text{, }\nexists n_{1}\in \mathrm{Z}\text{ : }x=2\pi n_{1}i+\frac{3\pi i}{2}\text{, }&\nexists n_{2}\in \mathrm{Z}\text{ : }x=2\pi n_{2}i+\frac{\pi i}{2}\text{ and }x\neq 0\text{ and }f\neq 1\text{ and }f\neq 0\\v\in \mathrm{C}\text{, }&\left(f=0\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }x=2\pi n_{1}i+\frac{3\pi i}{2}\right)\text{ or }\left(f=0\text{ and }\exists n_{2}\in \mathrm{Z}\text{ : }x=2\pi n_{2}i+\frac{\pi i}{2}\right)\text{ or }\left(f=1\text{ and }\frac{\cosh(x)}{x}=1\text{ and }x\neq 0\right)\end{matrix}\right.
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}