Solve for f
f=-\frac{x}{1-2x}
x\neq 0\text{ and }x\neq \frac{1}{2}
Solve for x
x=-\frac{f}{1-2f}
f\neq \frac{1}{2}\text{ and }f\neq 0
Graph
Share
Copied to clipboard
\frac{1}{f}x=2x-1
Reorder the terms.
1x=2xf+f\left(-1\right)
Variable f cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by f.
2xf+f\left(-1\right)=1x
Swap sides so that all variable terms are on the left hand side.
2fx-f=x
Reorder the terms.
\left(2x-1\right)f=x
Combine all terms containing f.
\frac{\left(2x-1\right)f}{2x-1}=\frac{x}{2x-1}
Divide both sides by 2x-1.
f=\frac{x}{2x-1}
Dividing by 2x-1 undoes the multiplication by 2x-1.
f=\frac{x}{2x-1}\text{, }f\neq 0
Variable f cannot be equal to 0.
f^{-1}x-2x=-1
Subtract 2x from both sides.
-2x+\frac{1}{f}x=-1
Reorder the terms.
-2xf+1x=-f
Multiply both sides of the equation by f.
-2fx+x=-f
Reorder the terms.
\left(-2f+1\right)x=-f
Combine all terms containing x.
\left(1-2f\right)x=-f
The equation is in standard form.
\frac{\left(1-2f\right)x}{1-2f}=-\frac{f}{1-2f}
Divide both sides by 1-2f.
x=-\frac{f}{1-2f}
Dividing by 1-2f undoes the multiplication by 1-2f.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}