Solve for f
f=\frac{x}{\sqrt{x+1}}
x\neq 0\text{ and }x>-1
Solve for x
\left\{\begin{matrix}x=\frac{f\left(\sqrt{f^{2}+4}+f\right)}{2}\text{, }&\frac{f\sqrt{f^{2}+4}}{2}+\frac{f^{2}}{2}+1\geq 0\text{ and }f\neq 0\text{ and }\frac{f\sqrt{f^{2}+4}+f^{2}}{2}\geq -1\\x=\frac{f\left(-\sqrt{f^{2}+4}+f\right)}{2}\text{, }&-\frac{f\sqrt{f^{2}+4}}{2}+\frac{f^{2}}{2}+1\geq 0\text{ and }f\left(-\sqrt{f^{2}+4}+f\right)<-2\text{ and }f\neq 0\text{ and }\frac{-f\sqrt{f^{2}+4}+f^{2}}{2}\geq -1\end{matrix}\right.
Graph
Share
Copied to clipboard
\frac{1}{f}x=\sqrt{x+1}
Reorder the terms.
1x=f\sqrt{x+1}
Variable f cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by f.
f\sqrt{x+1}=1x
Swap sides so that all variable terms are on the left hand side.
\sqrt{x+1}f=x
Reorder the terms.
\frac{\sqrt{x+1}f}{\sqrt{x+1}}=\frac{x}{\sqrt{x+1}}
Divide both sides by \sqrt{x+1}.
f=\frac{x}{\sqrt{x+1}}
Dividing by \sqrt{x+1} undoes the multiplication by \sqrt{x+1}.
f=\frac{x}{\sqrt{x+1}}\text{, }f\neq 0
Variable f cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}