Solve for f
f=-\frac{x\left(8x+7\right)}{9x-8}
x\neq -\frac{7}{8}\text{ and }x\neq 0\text{ and }x\neq \frac{8}{9}
Solve for x (complex solution)
x=\frac{\sqrt{81f^{2}+382f+49}-9f-7}{16}
x=\frac{-\sqrt{81f^{2}+382f+49}-9f-7}{16}\text{, }f\neq 0
Solve for x
x=\frac{\sqrt{81f^{2}+382f+49}-9f-7}{16}
x=\frac{-\sqrt{81f^{2}+382f+49}-9f-7}{16}\text{, }f\leq \frac{-16\sqrt{127}-191}{81}\text{ or }\left(f\neq 0\text{ and }f\geq \frac{16\sqrt{127}-191}{81}\right)
Graph
Share
Copied to clipboard
f^{-1}x\left(8x+7\right)=8-9x
Multiply both sides of the equation by 8x+7.
8f^{-1}x^{2}+7f^{-1}x=8-9x
Use the distributive property to multiply f^{-1}x by 8x+7.
8\times \frac{1}{f}x^{2}+7\times \frac{1}{f}x=-9x+8
Reorder the terms.
8\times 1x^{2}+7\times 1x=-9xf+f\times 8
Variable f cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by f.
8x^{2}+7x=-9xf+f\times 8
Do the multiplications.
-9xf+f\times 8=8x^{2}+7x
Swap sides so that all variable terms are on the left hand side.
\left(-9x+8\right)f=8x^{2}+7x
Combine all terms containing f.
\left(8-9x\right)f=8x^{2}+7x
The equation is in standard form.
\frac{\left(8-9x\right)f}{8-9x}=\frac{x\left(8x+7\right)}{8-9x}
Divide both sides by -9x+8.
f=\frac{x\left(8x+7\right)}{8-9x}
Dividing by -9x+8 undoes the multiplication by -9x+8.
f=\frac{x\left(8x+7\right)}{8-9x}\text{, }f\neq 0
Variable f cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}