Solve for f
f=\frac{2x\left(x-3\right)}{3x+7}
x\neq 3\text{ and }x\neq 0\text{ and }x\neq -\frac{7}{3}
Solve for x (complex solution)
x=\frac{\sqrt{9f^{2}+92f+36}}{4}+\frac{3f}{4}+\frac{3}{2}
x=-\frac{\sqrt{9f^{2}+92f+36}}{4}+\frac{3f}{4}+\frac{3}{2}\text{, }f\neq 0
Solve for x
x=\frac{\sqrt{9f^{2}+92f+36}}{4}+\frac{3f}{4}+\frac{3}{2}
x=-\frac{\sqrt{9f^{2}+92f+36}}{4}+\frac{3f}{4}+\frac{3}{2}\text{, }f\leq \frac{-16\sqrt{7}-46}{9}\text{ or }\left(f\neq 0\text{ and }f\geq \frac{16\sqrt{7}-46}{9}\right)
Graph
Share
Copied to clipboard
f^{-1}x\times 2\left(x-3\right)=3x+7
Multiply both sides of the equation by 2\left(x-3\right).
2f^{-1}x^{2}-3f^{-1}x\times 2=3x+7
Use the distributive property to multiply f^{-1}x\times 2 by x-3.
2f^{-1}x^{2}-6f^{-1}x=3x+7
Multiply -3 and 2 to get -6.
2\times \frac{1}{f}x^{2}-6\times \frac{1}{f}x=3x+7
Reorder the terms.
2\times 1x^{2}-6x=3xf+f\times 7
Variable f cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by f.
2x^{2}-6x=3xf+f\times 7
Do the multiplications.
3xf+f\times 7=2x^{2}-6x
Swap sides so that all variable terms are on the left hand side.
\left(3x+7\right)f=2x^{2}-6x
Combine all terms containing f.
\frac{\left(3x+7\right)f}{3x+7}=\frac{2x\left(x-3\right)}{3x+7}
Divide both sides by 3x+7.
f=\frac{2x\left(x-3\right)}{3x+7}
Dividing by 3x+7 undoes the multiplication by 3x+7.
f=\frac{2x\left(x-3\right)}{3x+7}\text{, }f\neq 0
Variable f cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}