Solve for f
f=\frac{x^{\frac{3}{2}}}{2x^{2}+1}
x>0
Graph
Share
Copied to clipboard
\frac{1}{f}x=\frac{2x^{2}+1}{\sqrt{x}}
Reorder the terms.
1x=fx^{-\frac{1}{2}}\left(2x^{2}+1\right)
Variable f cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by f.
1x=2fx^{-\frac{1}{2}}x^{2}+fx^{-\frac{1}{2}}
Use the distributive property to multiply fx^{-\frac{1}{2}} by 2x^{2}+1.
1x=2fx^{\frac{3}{2}}+fx^{-\frac{1}{2}}
To multiply powers of the same base, add their exponents. Add -\frac{1}{2} and 2 to get \frac{3}{2}.
2fx^{\frac{3}{2}}+fx^{-\frac{1}{2}}=1x
Swap sides so that all variable terms are on the left hand side.
2fx^{\frac{3}{2}}+x^{-\frac{1}{2}}f=x
Reorder the terms.
\left(2x^{\frac{3}{2}}+x^{-\frac{1}{2}}\right)f=x
Combine all terms containing f.
\left(2x^{\frac{3}{2}}+\frac{1}{\sqrt{x}}\right)f=x
The equation is in standard form.
\frac{\left(2x^{\frac{3}{2}}+\frac{1}{\sqrt{x}}\right)f}{2x^{\frac{3}{2}}+\frac{1}{\sqrt{x}}}=\frac{x}{2x^{\frac{3}{2}}+\frac{1}{\sqrt{x}}}
Divide both sides by 2x^{\frac{3}{2}}+x^{-\frac{1}{2}}.
f=\frac{x}{2x^{\frac{3}{2}}+\frac{1}{\sqrt{x}}}
Dividing by 2x^{\frac{3}{2}}+x^{-\frac{1}{2}} undoes the multiplication by 2x^{\frac{3}{2}}+x^{-\frac{1}{2}}.
f=\frac{x^{\frac{3}{2}}}{2x^{2}+1}
Divide x by 2x^{\frac{3}{2}}+x^{-\frac{1}{2}}.
f=\frac{x^{\frac{3}{2}}}{2x^{2}+1}\text{, }f\neq 0
Variable f cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}