Skip to main content
Solve for f
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{f}x=\frac{2x^{2}+1}{\sqrt{x}}
Reorder the terms.
1x=fx^{-\frac{1}{2}}\left(2x^{2}+1\right)
Variable f cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by f.
1x=2fx^{-\frac{1}{2}}x^{2}+fx^{-\frac{1}{2}}
Use the distributive property to multiply fx^{-\frac{1}{2}} by 2x^{2}+1.
1x=2fx^{\frac{3}{2}}+fx^{-\frac{1}{2}}
To multiply powers of the same base, add their exponents. Add -\frac{1}{2} and 2 to get \frac{3}{2}.
2fx^{\frac{3}{2}}+fx^{-\frac{1}{2}}=1x
Swap sides so that all variable terms are on the left hand side.
2fx^{\frac{3}{2}}+x^{-\frac{1}{2}}f=x
Reorder the terms.
\left(2x^{\frac{3}{2}}+x^{-\frac{1}{2}}\right)f=x
Combine all terms containing f.
\left(2x^{\frac{3}{2}}+\frac{1}{\sqrt{x}}\right)f=x
The equation is in standard form.
\frac{\left(2x^{\frac{3}{2}}+\frac{1}{\sqrt{x}}\right)f}{2x^{\frac{3}{2}}+\frac{1}{\sqrt{x}}}=\frac{x}{2x^{\frac{3}{2}}+\frac{1}{\sqrt{x}}}
Divide both sides by 2x^{\frac{3}{2}}+x^{-\frac{1}{2}}.
f=\frac{x}{2x^{\frac{3}{2}}+\frac{1}{\sqrt{x}}}
Dividing by 2x^{\frac{3}{2}}+x^{-\frac{1}{2}} undoes the multiplication by 2x^{\frac{3}{2}}+x^{-\frac{1}{2}}.
f=\frac{x^{\frac{3}{2}}}{2x^{2}+1}
Divide x by 2x^{\frac{3}{2}}+x^{-\frac{1}{2}}.
f=\frac{x^{\frac{3}{2}}}{2x^{2}+1}\text{, }f\neq 0
Variable f cannot be equal to 0.