Solve for f
f=-\frac{2x^{2}}{x-1}
x\neq 0\text{ and }x\neq 1
Solve for x (complex solution)
x=\frac{\sqrt{f\left(f+8\right)}-f}{4}
x=\frac{-\sqrt{f\left(f+8\right)}-f}{4}\text{, }f\neq 0
Solve for x
x=\frac{\sqrt{f\left(f+8\right)}-f}{4}
x=\frac{-\sqrt{f\left(f+8\right)}-f}{4}\text{, }f>0\text{ or }f\leq -8
Graph
Share
Copied to clipboard
f^{-1}x\times 2x=1-x
Multiply both sides of the equation by 2x.
f^{-1}x^{2}\times 2=1-x
Multiply x and x to get x^{2}.
2\times \frac{1}{f}x^{2}=-x+1
Reorder the terms.
2\times 1x^{2}=-xf+f
Variable f cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by f.
2x^{2}=-xf+f
Multiply 2 and 1 to get 2.
-xf+f=2x^{2}
Swap sides so that all variable terms are on the left hand side.
\left(-x+1\right)f=2x^{2}
Combine all terms containing f.
\left(1-x\right)f=2x^{2}
The equation is in standard form.
\frac{\left(1-x\right)f}{1-x}=\frac{2x^{2}}{1-x}
Divide both sides by -x+1.
f=\frac{2x^{2}}{1-x}
Dividing by -x+1 undoes the multiplication by -x+1.
f=\frac{2x^{2}}{1-x}\text{, }f\neq 0
Variable f cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}