Solve for f
f=-\frac{2x}{2-x}
x\neq 0\text{ and }x\neq 2
Solve for x
x=-\frac{2f}{2-f}
f\neq 2\text{ and }f\neq 0
Graph
Share
Copied to clipboard
\frac{1}{f}x=\frac{1}{2}x-1
Reorder the terms.
2\times 1x=\frac{1}{2}x\times 2f+2f\left(-1\right)
Variable f cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2f, the least common multiple of f,2.
2x=\frac{1}{2}x\times 2f+2f\left(-1\right)
Multiply 2 and 1 to get 2.
2x=xf+2f\left(-1\right)
Multiply \frac{1}{2} and 2 to get 1.
2x=xf-2f
Multiply 2 and -1 to get -2.
xf-2f=2x
Swap sides so that all variable terms are on the left hand side.
\left(x-2\right)f=2x
Combine all terms containing f.
\frac{\left(x-2\right)f}{x-2}=\frac{2x}{x-2}
Divide both sides by x-2.
f=\frac{2x}{x-2}
Dividing by x-2 undoes the multiplication by x-2.
f=\frac{2x}{x-2}\text{, }f\neq 0
Variable f cannot be equal to 0.
f^{-1}x-\frac{1}{2}x=-1
Subtract \frac{1}{2}x from both sides.
-\frac{1}{2}x+\frac{1}{f}x=-1
Reorder the terms.
-\frac{1}{2}x\times 2f+2\times 1x=-2f
Multiply both sides of the equation by 2f, the least common multiple of 2,f.
-xf+2\times 1x=-2f
Multiply -\frac{1}{2} and 2 to get -1.
-xf+2x=-2f
Multiply 2 and 1 to get 2.
\left(-f+2\right)x=-2f
Combine all terms containing x.
\left(2-f\right)x=-2f
The equation is in standard form.
\frac{\left(2-f\right)x}{2-f}=-\frac{2f}{2-f}
Divide both sides by 2-f.
x=-\frac{2f}{2-f}
Dividing by 2-f undoes the multiplication by 2-f.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}