Solve for f (complex solution)
f=-\left(x-1\right)^{-\frac{1}{2}}
x\neq 1
Solve for f
f=-\frac{1}{\sqrt{x-1}}
x>1
Solve for x
x=1+\frac{1}{f^{2}}
f<0
Solve for x (complex solution)
x=1+\frac{1}{f^{2}}
|-\pi +arg(\sqrt{\frac{1}{f^{2}}}f)|<\pi \text{ and }f\neq 0
Graph
Share
Copied to clipboard
\frac{1}{f}=-\sqrt{x-1}
Reorder the terms.
1=-\sqrt{x-1}f
Variable f cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by f.
-\sqrt{x-1}f=1
Swap sides so that all variable terms are on the left hand side.
\left(-\sqrt{x-1}\right)f=1
The equation is in standard form.
\frac{\left(-\sqrt{x-1}\right)f}{-\sqrt{x-1}}=\frac{1}{-\sqrt{x-1}}
Divide both sides by -\sqrt{x-1}.
f=\frac{1}{-\sqrt{x-1}}
Dividing by -\sqrt{x-1} undoes the multiplication by -\sqrt{x-1}.
f=-\left(x-1\right)^{-\frac{1}{2}}
Divide 1 by -\sqrt{x-1}.
f=-\left(x-1\right)^{-\frac{1}{2}}\text{, }f\neq 0
Variable f cannot be equal to 0.
\frac{1}{f}=-\sqrt{x-1}
Reorder the terms.
1=-\sqrt{x-1}f
Variable f cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by f.
-\sqrt{x-1}f=1
Swap sides so that all variable terms are on the left hand side.
\left(-\sqrt{x-1}\right)f=1
The equation is in standard form.
\frac{\left(-\sqrt{x-1}\right)f}{-\sqrt{x-1}}=\frac{1}{-\sqrt{x-1}}
Divide both sides by -\sqrt{x-1}.
f=\frac{1}{-\sqrt{x-1}}
Dividing by -\sqrt{x-1} undoes the multiplication by -\sqrt{x-1}.
f=-\frac{1}{\sqrt{x-1}}
Divide 1 by -\sqrt{x-1}.
f=-\frac{1}{\sqrt{x-1}}\text{, }f\neq 0
Variable f cannot be equal to 0.
-\sqrt{x-1}=f^{-1}
Swap sides so that all variable terms are on the left hand side.
-\sqrt{x-1}=\frac{1}{f}
Reorder the terms.
-\sqrt{x-1}f=1
Multiply both sides of the equation by f.
\frac{\left(-f\right)\sqrt{x-1}}{-f}=\frac{1}{-f}
Divide both sides by -f.
\sqrt{x-1}=\frac{1}{-f}
Dividing by -f undoes the multiplication by -f.
\sqrt{x-1}=-\frac{1}{f}
Divide 1 by -f.
x-1=\frac{1}{f^{2}}
Square both sides of the equation.
x-1-\left(-1\right)=\frac{1}{f^{2}}-\left(-1\right)
Add 1 to both sides of the equation.
x=\frac{1}{f^{2}}-\left(-1\right)
Subtracting -1 from itself leaves 0.
x=1+\frac{1}{f^{2}}
Subtract -1 from \frac{1}{f^{2}}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}