Solve for f
f=-\frac{4}{5-3x}
x\neq \frac{5}{3}
Solve for x
x=\frac{5}{3}+\frac{4}{3f}
f\neq 0
Graph
Share
Copied to clipboard
4f^{-1}=3x-5
Multiply both sides of the equation by 4.
4\times \frac{1}{f}=3x-5
Reorder the terms.
4\times 1=3xf+f\left(-5\right)
Variable f cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by f.
4=3xf+f\left(-5\right)
Multiply 4 and 1 to get 4.
3xf+f\left(-5\right)=4
Swap sides so that all variable terms are on the left hand side.
\left(3x-5\right)f=4
Combine all terms containing f.
\frac{\left(3x-5\right)f}{3x-5}=\frac{4}{3x-5}
Divide both sides by 3x-5.
f=\frac{4}{3x-5}
Dividing by 3x-5 undoes the multiplication by 3x-5.
f=\frac{4}{3x-5}\text{, }f\neq 0
Variable f cannot be equal to 0.
4f^{-1}=3x-5
Multiply both sides of the equation by 4.
3x-5=4f^{-1}
Swap sides so that all variable terms are on the left hand side.
3x=4f^{-1}+5
Add 5 to both sides.
3x=5+4\times \frac{1}{f}
Reorder the terms.
3xf=f\times 5+4\times 1
Multiply both sides of the equation by f.
3xf=f\times 5+4
Multiply 4 and 1 to get 4.
3fx=5f+4
The equation is in standard form.
\frac{3fx}{3f}=\frac{5f+4}{3f}
Divide both sides by 3f.
x=\frac{5f+4}{3f}
Dividing by 3f undoes the multiplication by 3f.
x=\frac{5}{3}+\frac{4}{3f}
Divide 5f+4 by 3f.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}