Solve for f
f=-\frac{x+4}{2x-1}
x\neq -4\text{ and }x\neq \frac{1}{2}
Solve for x
x=-\frac{4-f}{2f+1}
f\neq 0\text{ and }f\neq -\frac{1}{2}
Graph
Share
Copied to clipboard
\left(x+4\right)f^{-1}=-2x+1
Multiply both sides of the equation by x+4.
xf^{-1}+4f^{-1}=-2x+1
Use the distributive property to multiply x+4 by f^{-1}.
\frac{1}{f}x+4\times \frac{1}{f}=-2x+1
Reorder the terms.
1x+4\times 1=-2xf+f
Variable f cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by f.
1x+4=-2xf+f
Multiply 4 and 1 to get 4.
-2xf+f=1x+4
Swap sides so that all variable terms are on the left hand side.
-2fx+f=x+4
Reorder the terms.
\left(-2x+1\right)f=x+4
Combine all terms containing f.
\left(1-2x\right)f=x+4
The equation is in standard form.
\frac{\left(1-2x\right)f}{1-2x}=\frac{x+4}{1-2x}
Divide both sides by -2x+1.
f=\frac{x+4}{1-2x}
Dividing by -2x+1 undoes the multiplication by -2x+1.
f=\frac{x+4}{1-2x}\text{, }f\neq 0
Variable f cannot be equal to 0.
\left(x+4\right)f^{-1}=-2x+1
Variable x cannot be equal to -4 since division by zero is not defined. Multiply both sides of the equation by x+4.
xf^{-1}+4f^{-1}=-2x+1
Use the distributive property to multiply x+4 by f^{-1}.
xf^{-1}+4f^{-1}+2x=1
Add 2x to both sides.
xf^{-1}+2x=1-4f^{-1}
Subtract 4f^{-1} from both sides.
2x+\frac{1}{f}x=1-4\times \frac{1}{f}
Reorder the terms.
2xf+1x=f-4
Multiply both sides of the equation by f.
2fx+x=f-4
Reorder the terms.
\left(2f+1\right)x=f-4
Combine all terms containing x.
\frac{\left(2f+1\right)x}{2f+1}=\frac{f-4}{2f+1}
Divide both sides by 1+2f.
x=\frac{f-4}{2f+1}
Dividing by 1+2f undoes the multiplication by 1+2f.
x=\frac{f-4}{2f+1}\text{, }x\neq -4
Variable x cannot be equal to -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}