Solve for a
a=\frac{e^{2x}}{x}
x\neq 0
Solve for f
f\in \mathrm{R}
a=\frac{e^{2x}}{x}\text{ and }x\neq 0
Share
Copied to clipboard
e^{x}+ae^{-x}\left(-x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)x
Swap sides so that all variable terms are on the left hand side.
ae^{-x}\left(-x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)x-e^{x}
Subtract e^{x} from both sides.
-axe^{-x}=x\frac{\mathrm{d}}{\mathrm{d}x}(f)-e^{x}
Reorder the terms.
\left(-\frac{x}{e^{x}}\right)a=-e^{x}
The equation is in standard form.
\frac{\left(-\frac{x}{e^{x}}\right)a}{-\frac{x}{e^{x}}}=-\frac{e^{x}}{-\frac{x}{e^{x}}}
Divide both sides by -xe^{-x}.
a=-\frac{e^{x}}{-\frac{x}{e^{x}}}
Dividing by -xe^{-x} undoes the multiplication by -xe^{-x}.
a=\frac{e^{2x}}{x}
Divide -e^{x} by -xe^{-x}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}