f ^ { \prime } ( x ) = 6 x - 8 \text { en } ( 1,2 )
Solve for n
n=\frac{5x}{8e}
Solve for f
f\in \mathrm{R}
x=\frac{8en}{5}
Share
Copied to clipboard
\frac{\mathrm{d}}{\mathrm{d}x}(f)x=6x-9,6en
Multiply 8 and 1,2 to get 9,6.
6x-9,6en=\frac{\mathrm{d}}{\mathrm{d}x}(f)x
Swap sides so that all variable terms are on the left hand side.
-9,6en=\frac{\mathrm{d}}{\mathrm{d}x}(f)x-6x
Subtract 6x from both sides.
\left(-\frac{48e}{5}\right)n=-6x
The equation is in standard form.
\frac{\left(-\frac{48e}{5}\right)n}{-\frac{48e}{5}}=-\frac{6x}{-\frac{48e}{5}}
Divide both sides by -9,6e.
n=-\frac{6x}{-\frac{48e}{5}}
Dividing by -9,6e undoes the multiplication by -9,6e.
n=\frac{5x}{8e}
Divide -6x by -9,6e.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}