Solve for a
a=\frac{\cos(x)}{4x\cos(2x)}
\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}}{2}+\frac{\pi }{4}\text{ and }x\neq 0
Solve for f (complex solution)
f\in \mathrm{C}
a=\frac{\cos(x)}{4x\cos(2x)}\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi \left(2n_{1}+1\right)}{4}\text{ and }x\neq 0
Solve for f
f\in \mathrm{R}
a=\frac{\cos(x)}{4x\cos(2x)}\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi \left(2n_{1}+1\right)}{4}\text{ and }x\neq 0
Share
Copied to clipboard
2xa\cos(2x)-\frac{1}{2}\cos(x)=\frac{\mathrm{d}}{\mathrm{d}x}(f)x
Swap sides so that all variable terms are on the left hand side.
2xa\cos(2x)=\frac{\mathrm{d}}{\mathrm{d}x}(f)x+\frac{1}{2}\cos(x)
Add \frac{1}{2}\cos(x) to both sides.
2x\cos(2x)a=\frac{\cos(x)}{2}
The equation is in standard form.
\frac{2x\cos(2x)a}{2x\cos(2x)}=\frac{\cos(x)}{2\times 2x\cos(2x)}
Divide both sides by 2x\cos(2x).
a=\frac{\cos(x)}{2\times 2x\cos(2x)}
Dividing by 2x\cos(2x) undoes the multiplication by 2x\cos(2x).
a=\frac{\cos(x)}{4x\cos(2x)}
Divide \frac{\cos(x)}{2} by 2x\cos(2x).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}