Solve for b
\left\{\begin{matrix}b=-\frac{gm}{fx}\text{, }&x\neq 0\text{ and }f\neq 0\text{ and }m\neq 0\\b\in \mathrm{R}\text{, }&\left(x=0\text{ or }f=0\right)\text{ and }g=0\text{ and }m\neq 0\end{matrix}\right.
Solve for f
\left\{\begin{matrix}f=-\frac{gm}{bx}\text{, }&x\neq 0\text{ and }b\neq 0\text{ and }m\neq 0\\f\in \mathrm{R}\text{, }&\left(x=0\text{ or }b=0\right)\text{ and }g=0\text{ and }m\neq 0\end{matrix}\right.
Share
Copied to clipboard
\frac{\mathrm{d}}{\mathrm{d}x}(f)xm=\left(-\frac{b}{m}\right)fxm-gm
Multiply both sides of the equation by m.
\frac{\mathrm{d}}{\mathrm{d}x}(f)xm=\frac{-bf}{m}xm-gm
Express \left(-\frac{b}{m}\right)f as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(f)xm=\frac{-bfx}{m}m-gm
Express \frac{-bf}{m}x as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(f)xm=\frac{-bfxm}{m}-gm
Express \frac{-bfx}{m}m as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(f)xm=-bfx-gm
Cancel out m in both numerator and denominator.
-bfx-gm=\frac{\mathrm{d}}{\mathrm{d}x}(f)xm
Swap sides so that all variable terms are on the left hand side.
-bfx=\frac{\mathrm{d}}{\mathrm{d}x}(f)xm+gm
Add gm to both sides.
\left(-fx\right)b=gm
The equation is in standard form.
\frac{\left(-fx\right)b}{-fx}=\frac{gm}{-fx}
Divide both sides by -fx.
b=\frac{gm}{-fx}
Dividing by -fx undoes the multiplication by -fx.
b=-\frac{gm}{fx}
Divide gm by -fx.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}