Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{1}{x}\text{, }&x\neq 0\\a\in \mathrm{C}\text{, }&x=-\frac{1}{2}\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{1}{x}\text{, }&x\neq -\frac{1}{2}\text{ and }x\neq 0\\a\in \mathrm{R}\text{, }&x=-\frac{1}{2}\end{matrix}\right.
Solve for f (complex solution)
f\in \mathrm{C}
x=-\frac{1}{2}\text{ or }\left(x=\frac{1}{a}\text{ and }a\neq 0\right)
Solve for f
f\in \mathrm{R}
x=-\frac{1}{2}\text{ or }\left(x=\frac{1}{a}\text{ and }a\neq 0\right)
Share
Copied to clipboard
\frac{\mathrm{d}}{\mathrm{d}x}(f)xx=1-2axx+x\times 2-ax
Multiply both sides of the equation by x.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}=1-2axx+x\times 2-ax
Multiply x and x to get x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}=1-2ax^{2}+x\times 2-ax
Multiply x and x to get x^{2}.
1-2ax^{2}+x\times 2-ax=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}
Swap sides so that all variable terms are on the left hand side.
-2ax^{2}+x\times 2-ax=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}-1
Subtract 1 from both sides.
-2ax^{2}-ax=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}-1-x\times 2
Subtract x\times 2 from both sides.
-2ax^{2}-ax=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}-1-2x
Multiply -1 and 2 to get -2.
\left(-2x^{2}-x\right)a=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}-1-2x
Combine all terms containing a.
\left(-2x^{2}-x\right)a=-2x-1
The equation is in standard form.
\frac{\left(-2x^{2}-x\right)a}{-2x^{2}-x}=\frac{-2x-1}{-2x^{2}-x}
Divide both sides by -2x^{2}-x.
a=\frac{-2x-1}{-2x^{2}-x}
Dividing by -2x^{2}-x undoes the multiplication by -2x^{2}-x.
a=\frac{1}{x}
Divide -1-2x by -2x^{2}-x.
\frac{\mathrm{d}}{\mathrm{d}x}(f)xx=1-2axx+x\times 2-ax
Multiply both sides of the equation by x.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}=1-2axx+x\times 2-ax
Multiply x and x to get x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}=1-2ax^{2}+x\times 2-ax
Multiply x and x to get x^{2}.
1-2ax^{2}+x\times 2-ax=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}
Swap sides so that all variable terms are on the left hand side.
-2ax^{2}+x\times 2-ax=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}-1
Subtract 1 from both sides.
-2ax^{2}-ax=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}-1-x\times 2
Subtract x\times 2 from both sides.
-2ax^{2}-ax=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}-1-2x
Multiply -1 and 2 to get -2.
\left(-2x^{2}-x\right)a=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}-1-2x
Combine all terms containing a.
\left(-2x^{2}-x\right)a=-2x-1
The equation is in standard form.
\frac{\left(-2x^{2}-x\right)a}{-2x^{2}-x}=\frac{-2x-1}{-2x^{2}-x}
Divide both sides by -2x^{2}-x.
a=\frac{-2x-1}{-2x^{2}-x}
Dividing by -2x^{2}-x undoes the multiplication by -2x^{2}-x.
a=\frac{1}{x}
Divide -1-2x by -2x^{2}-x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}