Solve for a
a=x-1+\frac{1}{x}
x\neq 0
Solve for f
f\in \mathrm{R}
a=x-1+\frac{1}{x}\text{ and }x\neq 0
Share
Copied to clipboard
\frac{\mathrm{d}}{\mathrm{d}x}(f)xx=1+xx-\left(1+a\right)x
Multiply both sides of the equation by x.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}=1+xx-\left(1+a\right)x
Multiply x and x to get x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}=1+x^{2}-\left(1+a\right)x
Multiply x and x to get x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}=1+x^{2}+\left(-1-a\right)x
Use the distributive property to multiply -1 by 1+a.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}=1+x^{2}-x-ax
Use the distributive property to multiply -1-a by x.
1+x^{2}-x-ax=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}
Swap sides so that all variable terms are on the left hand side.
x^{2}-x-ax=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}-1
Subtract 1 from both sides.
-x-ax=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}-1-x^{2}
Subtract x^{2} from both sides.
-ax=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}-1-x^{2}+x
Add x to both sides.
\left(-x\right)a=-x^{2}+x-1
The equation is in standard form.
\frac{\left(-x\right)a}{-x}=\frac{-x^{2}+x-1}{-x}
Divide both sides by -x.
a=\frac{-x^{2}+x-1}{-x}
Dividing by -x undoes the multiplication by -x.
a=x-1+\frac{1}{x}
Divide -1-x^{2}+x by -x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}