Skip to main content
Solve for a
Tick mark Image
Solve for f
Tick mark Image

Similar Problems from Web Search

Share

\frac{\mathrm{d}}{\mathrm{d}x}(f)xx=1+xx-\left(1+a\right)x
Multiply both sides of the equation by x.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}=1+xx-\left(1+a\right)x
Multiply x and x to get x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}=1+x^{2}-\left(1+a\right)x
Multiply x and x to get x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}=1+x^{2}+\left(-1-a\right)x
Use the distributive property to multiply -1 by 1+a.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}=1+x^{2}-x-ax
Use the distributive property to multiply -1-a by x.
1+x^{2}-x-ax=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}
Swap sides so that all variable terms are on the left hand side.
x^{2}-x-ax=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}-1
Subtract 1 from both sides.
-x-ax=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}-1-x^{2}
Subtract x^{2} from both sides.
-ax=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{2}-1-x^{2}+x
Add x to both sides.
\left(-x\right)a=-x^{2}+x-1
The equation is in standard form.
\frac{\left(-x\right)a}{-x}=\frac{-x^{2}+x-1}{-x}
Divide both sides by -x.
a=\frac{-x^{2}+x-1}{-x}
Dividing by -x undoes the multiplication by -x.
a=x-1+\frac{1}{x}
Divide -1-x^{2}+x by -x.