Evaluate
\frac{150f}{29}
Expand
\frac{150f}{29}
Share
Copied to clipboard
f\times \frac{\frac{24+1}{4}}{\frac{2\times 4+1}{4}-\frac{1}{2}\left(\frac{2\times 2+1}{2}-\frac{1}{4}-\frac{1}{6}\right)}
Multiply 6 and 4 to get 24.
f\times \frac{\frac{25}{4}}{\frac{2\times 4+1}{4}-\frac{1}{2}\left(\frac{2\times 2+1}{2}-\frac{1}{4}-\frac{1}{6}\right)}
Add 24 and 1 to get 25.
f\times \frac{\frac{25}{4}}{\frac{8+1}{4}-\frac{1}{2}\left(\frac{2\times 2+1}{2}-\frac{1}{4}-\frac{1}{6}\right)}
Multiply 2 and 4 to get 8.
f\times \frac{\frac{25}{4}}{\frac{9}{4}-\frac{1}{2}\left(\frac{2\times 2+1}{2}-\frac{1}{4}-\frac{1}{6}\right)}
Add 8 and 1 to get 9.
f\times \frac{\frac{25}{4}}{\frac{9}{4}-\frac{1}{2}\left(\frac{4+1}{2}-\frac{1}{4}-\frac{1}{6}\right)}
Multiply 2 and 2 to get 4.
f\times \frac{\frac{25}{4}}{\frac{9}{4}-\frac{1}{2}\left(\frac{5}{2}-\frac{1}{4}-\frac{1}{6}\right)}
Add 4 and 1 to get 5.
f\times \frac{\frac{25}{4}}{\frac{9}{4}-\frac{1}{2}\left(\frac{10}{4}-\frac{1}{4}-\frac{1}{6}\right)}
Least common multiple of 2 and 4 is 4. Convert \frac{5}{2} and \frac{1}{4} to fractions with denominator 4.
f\times \frac{\frac{25}{4}}{\frac{9}{4}-\frac{1}{2}\left(\frac{10-1}{4}-\frac{1}{6}\right)}
Since \frac{10}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
f\times \frac{\frac{25}{4}}{\frac{9}{4}-\frac{1}{2}\left(\frac{9}{4}-\frac{1}{6}\right)}
Subtract 1 from 10 to get 9.
f\times \frac{\frac{25}{4}}{\frac{9}{4}-\frac{1}{2}\left(\frac{27}{12}-\frac{2}{12}\right)}
Least common multiple of 4 and 6 is 12. Convert \frac{9}{4} and \frac{1}{6} to fractions with denominator 12.
f\times \frac{\frac{25}{4}}{\frac{9}{4}-\frac{1}{2}\times \frac{27-2}{12}}
Since \frac{27}{12} and \frac{2}{12} have the same denominator, subtract them by subtracting their numerators.
f\times \frac{\frac{25}{4}}{\frac{9}{4}-\frac{1}{2}\times \frac{25}{12}}
Subtract 2 from 27 to get 25.
f\times \frac{\frac{25}{4}}{\frac{9}{4}-\frac{1\times 25}{2\times 12}}
Multiply \frac{1}{2} times \frac{25}{12} by multiplying numerator times numerator and denominator times denominator.
f\times \frac{\frac{25}{4}}{\frac{9}{4}-\frac{25}{24}}
Do the multiplications in the fraction \frac{1\times 25}{2\times 12}.
f\times \frac{\frac{25}{4}}{\frac{54}{24}-\frac{25}{24}}
Least common multiple of 4 and 24 is 24. Convert \frac{9}{4} and \frac{25}{24} to fractions with denominator 24.
f\times \frac{\frac{25}{4}}{\frac{54-25}{24}}
Since \frac{54}{24} and \frac{25}{24} have the same denominator, subtract them by subtracting their numerators.
f\times \frac{\frac{25}{4}}{\frac{29}{24}}
Subtract 25 from 54 to get 29.
f\times \frac{25}{4}\times \frac{24}{29}
Divide \frac{25}{4} by \frac{29}{24} by multiplying \frac{25}{4} by the reciprocal of \frac{29}{24}.
f\times \frac{25\times 24}{4\times 29}
Multiply \frac{25}{4} times \frac{24}{29} by multiplying numerator times numerator and denominator times denominator.
f\times \frac{600}{116}
Do the multiplications in the fraction \frac{25\times 24}{4\times 29}.
f\times \frac{150}{29}
Reduce the fraction \frac{600}{116} to lowest terms by extracting and canceling out 4.
f\times \frac{\frac{24+1}{4}}{\frac{2\times 4+1}{4}-\frac{1}{2}\left(\frac{2\times 2+1}{2}-\frac{1}{4}-\frac{1}{6}\right)}
Multiply 6 and 4 to get 24.
f\times \frac{\frac{25}{4}}{\frac{2\times 4+1}{4}-\frac{1}{2}\left(\frac{2\times 2+1}{2}-\frac{1}{4}-\frac{1}{6}\right)}
Add 24 and 1 to get 25.
f\times \frac{\frac{25}{4}}{\frac{8+1}{4}-\frac{1}{2}\left(\frac{2\times 2+1}{2}-\frac{1}{4}-\frac{1}{6}\right)}
Multiply 2 and 4 to get 8.
f\times \frac{\frac{25}{4}}{\frac{9}{4}-\frac{1}{2}\left(\frac{2\times 2+1}{2}-\frac{1}{4}-\frac{1}{6}\right)}
Add 8 and 1 to get 9.
f\times \frac{\frac{25}{4}}{\frac{9}{4}-\frac{1}{2}\left(\frac{4+1}{2}-\frac{1}{4}-\frac{1}{6}\right)}
Multiply 2 and 2 to get 4.
f\times \frac{\frac{25}{4}}{\frac{9}{4}-\frac{1}{2}\left(\frac{5}{2}-\frac{1}{4}-\frac{1}{6}\right)}
Add 4 and 1 to get 5.
f\times \frac{\frac{25}{4}}{\frac{9}{4}-\frac{1}{2}\left(\frac{10}{4}-\frac{1}{4}-\frac{1}{6}\right)}
Least common multiple of 2 and 4 is 4. Convert \frac{5}{2} and \frac{1}{4} to fractions with denominator 4.
f\times \frac{\frac{25}{4}}{\frac{9}{4}-\frac{1}{2}\left(\frac{10-1}{4}-\frac{1}{6}\right)}
Since \frac{10}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
f\times \frac{\frac{25}{4}}{\frac{9}{4}-\frac{1}{2}\left(\frac{9}{4}-\frac{1}{6}\right)}
Subtract 1 from 10 to get 9.
f\times \frac{\frac{25}{4}}{\frac{9}{4}-\frac{1}{2}\left(\frac{27}{12}-\frac{2}{12}\right)}
Least common multiple of 4 and 6 is 12. Convert \frac{9}{4} and \frac{1}{6} to fractions with denominator 12.
f\times \frac{\frac{25}{4}}{\frac{9}{4}-\frac{1}{2}\times \frac{27-2}{12}}
Since \frac{27}{12} and \frac{2}{12} have the same denominator, subtract them by subtracting their numerators.
f\times \frac{\frac{25}{4}}{\frac{9}{4}-\frac{1}{2}\times \frac{25}{12}}
Subtract 2 from 27 to get 25.
f\times \frac{\frac{25}{4}}{\frac{9}{4}-\frac{1\times 25}{2\times 12}}
Multiply \frac{1}{2} times \frac{25}{12} by multiplying numerator times numerator and denominator times denominator.
f\times \frac{\frac{25}{4}}{\frac{9}{4}-\frac{25}{24}}
Do the multiplications in the fraction \frac{1\times 25}{2\times 12}.
f\times \frac{\frac{25}{4}}{\frac{54}{24}-\frac{25}{24}}
Least common multiple of 4 and 24 is 24. Convert \frac{9}{4} and \frac{25}{24} to fractions with denominator 24.
f\times \frac{\frac{25}{4}}{\frac{54-25}{24}}
Since \frac{54}{24} and \frac{25}{24} have the same denominator, subtract them by subtracting their numerators.
f\times \frac{\frac{25}{4}}{\frac{29}{24}}
Subtract 25 from 54 to get 29.
f\times \frac{25}{4}\times \frac{24}{29}
Divide \frac{25}{4} by \frac{29}{24} by multiplying \frac{25}{4} by the reciprocal of \frac{29}{24}.
f\times \frac{25\times 24}{4\times 29}
Multiply \frac{25}{4} times \frac{24}{29} by multiplying numerator times numerator and denominator times denominator.
f\times \frac{600}{116}
Do the multiplications in the fraction \frac{25\times 24}{4\times 29}.
f\times \frac{150}{29}
Reduce the fraction \frac{600}{116} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}