Skip to main content
Solve for g
Tick mark Image
Solve for f
Tick mark Image

Similar Problems from Web Search

Share

f=\frac{1}{9}g+\frac{1}{9}h-\frac{1}{9}k
Use the distributive property to multiply \frac{1}{9} by g+h-k.
\frac{1}{9}g+\frac{1}{9}h-\frac{1}{9}k=f
Swap sides so that all variable terms are on the left hand side.
\frac{1}{9}g-\frac{1}{9}k=f-\frac{1}{9}h
Subtract \frac{1}{9}h from both sides.
\frac{1}{9}g=f-\frac{1}{9}h+\frac{1}{9}k
Add \frac{1}{9}k to both sides.
\frac{1}{9}g=\frac{k}{9}-\frac{h}{9}+f
The equation is in standard form.
\frac{\frac{1}{9}g}{\frac{1}{9}}=\frac{\frac{k}{9}-\frac{h}{9}+f}{\frac{1}{9}}
Multiply both sides by 9.
g=\frac{\frac{k}{9}-\frac{h}{9}+f}{\frac{1}{9}}
Dividing by \frac{1}{9} undoes the multiplication by \frac{1}{9}.
g=9f-h+k
Divide f-\frac{h}{9}+\frac{k}{9} by \frac{1}{9} by multiplying f-\frac{h}{9}+\frac{k}{9} by the reciprocal of \frac{1}{9}.
f=\frac{1}{9}g+\frac{1}{9}h-\frac{1}{9}k
Use the distributive property to multiply \frac{1}{9} by g+h-k.