Solve for b
b=-\frac{\sqrt{7}\left(3\sqrt{7}f+a-8f\right)}{7}
Solve for a
a=-3\sqrt{7}f-\sqrt{7}b+8f
Quiz
Algebra
5 problems similar to:
f : \frac { 3 + \sqrt { 7 } } { 3 - \sqrt { 7 } } = a + b \sqrt { 7 }
Share
Copied to clipboard
\frac{f\left(3-\sqrt{7}\right)}{3+\sqrt{7}}=a+b\sqrt{7}
Divide f by \frac{3+\sqrt{7}}{3-\sqrt{7}} by multiplying f by the reciprocal of \frac{3+\sqrt{7}}{3-\sqrt{7}}.
\frac{f\left(3-\sqrt{7}\right)\left(3-\sqrt{7}\right)}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}=a+b\sqrt{7}
Rationalize the denominator of \frac{f\left(3-\sqrt{7}\right)}{3+\sqrt{7}} by multiplying numerator and denominator by 3-\sqrt{7}.
\frac{f\left(3-\sqrt{7}\right)\left(3-\sqrt{7}\right)}{3^{2}-\left(\sqrt{7}\right)^{2}}=a+b\sqrt{7}
Consider \left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{f\left(3-\sqrt{7}\right)\left(3-\sqrt{7}\right)}{9-7}=a+b\sqrt{7}
Square 3. Square \sqrt{7}.
\frac{f\left(3-\sqrt{7}\right)\left(3-\sqrt{7}\right)}{2}=a+b\sqrt{7}
Subtract 7 from 9 to get 2.
\frac{f\left(3-\sqrt{7}\right)^{2}}{2}=a+b\sqrt{7}
Multiply 3-\sqrt{7} and 3-\sqrt{7} to get \left(3-\sqrt{7}\right)^{2}.
\frac{f\left(9-6\sqrt{7}+\left(\sqrt{7}\right)^{2}\right)}{2}=a+b\sqrt{7}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-\sqrt{7}\right)^{2}.
\frac{f\left(9-6\sqrt{7}+7\right)}{2}=a+b\sqrt{7}
The square of \sqrt{7} is 7.
\frac{f\left(16-6\sqrt{7}\right)}{2}=a+b\sqrt{7}
Add 9 and 7 to get 16.
\frac{16f-6f\sqrt{7}}{2}=a+b\sqrt{7}
Use the distributive property to multiply f by 16-6\sqrt{7}.
a+b\sqrt{7}=\frac{16f-6f\sqrt{7}}{2}
Swap sides so that all variable terms are on the left hand side.
b\sqrt{7}=\frac{16f-6f\sqrt{7}}{2}-a
Subtract a from both sides.
2b\sqrt{7}=16f-6f\sqrt{7}-2a
Multiply both sides of the equation by 2.
2\sqrt{7}b=-6\sqrt{7}f-2a+16f
Reorder the terms.
2\sqrt{7}b=-6\sqrt{7}f+16f-2a
The equation is in standard form.
\frac{2\sqrt{7}b}{2\sqrt{7}}=\frac{-6\sqrt{7}f+16f-2a}{2\sqrt{7}}
Divide both sides by 2\sqrt{7}.
b=\frac{-6\sqrt{7}f+16f-2a}{2\sqrt{7}}
Dividing by 2\sqrt{7} undoes the multiplication by 2\sqrt{7}.
b=\frac{\sqrt{7}\left(-3\sqrt{7}f+8f-a\right)}{7}
Divide -6\sqrt{7}f-2a+16f by 2\sqrt{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}