Solve for x
x=\frac{\sqrt{2001e+1000000}-1000}{e}\approx 0.999143187
x=-\frac{\sqrt{2001e+1000000}+1000}{e}\approx -736.75802553
Graph
Share
Copied to clipboard
ex^{2}+2000x-2001=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2000±\sqrt{2000^{2}-4e\left(-2001\right)}}{2e}
This equation is in standard form: ax^{2}+bx+c=0. Substitute e for a, 2000 for b, and -2001 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2000±\sqrt{4000000-4e\left(-2001\right)}}{2e}
Square 2000.
x=\frac{-2000±\sqrt{4000000+\left(-4e\right)\left(-2001\right)}}{2e}
Multiply -4 times e.
x=\frac{-2000±\sqrt{4000000+8004e}}{2e}
Multiply -4e times -2001.
x=\frac{-2000±\sqrt{8004e+4000000}}{2e}
Add 4000000 to 8004e.
x=\frac{-2000±2\sqrt{2001e+1000000}}{2e}
Take the square root of 4000000+8004e.
x=\frac{2\sqrt{2001e+1000000}-2000}{2e}
Now solve the equation x=\frac{-2000±2\sqrt{2001e+1000000}}{2e} when ± is plus. Add -2000 to 2\sqrt{1000000+2001e}.
x=\frac{\sqrt{2001e+1000000}-1000}{e}
Divide -2000+2\sqrt{1000000+2001e} by 2e.
x=\frac{-2\sqrt{2001e+1000000}-2000}{2e}
Now solve the equation x=\frac{-2000±2\sqrt{2001e+1000000}}{2e} when ± is minus. Subtract 2\sqrt{1000000+2001e} from -2000.
x=-\frac{\sqrt{2001e+1000000}+1000}{e}
Divide -2000-2\sqrt{1000000+2001e} by 2e.
x=\frac{\sqrt{2001e+1000000}-1000}{e} x=-\frac{\sqrt{2001e+1000000}+1000}{e}
The equation is now solved.
ex^{2}+2000x-2001=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
ex^{2}+2000x-2001-\left(-2001\right)=-\left(-2001\right)
Add 2001 to both sides of the equation.
ex^{2}+2000x=-\left(-2001\right)
Subtracting -2001 from itself leaves 0.
ex^{2}+2000x=2001
Subtract -2001 from 0.
\frac{ex^{2}+2000x}{e}=\frac{2001}{e}
Divide both sides by e.
x^{2}+\frac{2000}{e}x=\frac{2001}{e}
Dividing by e undoes the multiplication by e.
x^{2}+\frac{2000}{e}x+\left(\frac{1000}{e}\right)^{2}=\frac{2001}{e}+\left(\frac{1000}{e}\right)^{2}
Divide \frac{2000}{e}, the coefficient of the x term, by 2 to get \frac{1000}{e}. Then add the square of \frac{1000}{e} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2000}{e}x+\frac{1000000}{e^{2}}=\frac{2001}{e}+\frac{1000000}{e^{2}}
Square \frac{1000}{e}.
x^{2}+\frac{2000}{e}x+\frac{1000000}{e^{2}}=\frac{2001e+1000000}{e^{2}}
Add \frac{2001}{e} to \frac{1000000}{e^{2}}.
\left(x+\frac{1000}{e}\right)^{2}=\frac{2001e+1000000}{e^{2}}
Factor x^{2}+\frac{2000}{e}x+\frac{1000000}{e^{2}}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1000}{e}\right)^{2}}=\sqrt{\frac{2001e+1000000}{e^{2}}}
Take the square root of both sides of the equation.
x+\frac{1000}{e}=\frac{\sqrt{2001e+1000000}}{e} x+\frac{1000}{e}=-\frac{\sqrt{2001e+1000000}}{e}
Simplify.
x=\frac{\sqrt{2001e+1000000}-1000}{e} x=-\frac{\sqrt{2001e+1000000}+1000}{e}
Subtract \frac{1000}{e} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}