Solve for x
x=\frac{i\left(\sqrt{24e+1}+1\right)}{2e}\approx 1.680973611i
x=\frac{-i\sqrt{24e+1}+i}{2e}\approx -1.313094169i
Share
Copied to clipboard
ex^{2}-ix+6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{i±\sqrt{\left(-i\right)^{2}-4e\times 6}}{2e}
This equation is in standard form: ax^{2}+bx+c=0. Substitute e for a, -i for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{i±\sqrt{-1-4e\times 6}}{2e}
Square -i.
x=\frac{i±\sqrt{-1+\left(-4e\right)\times 6}}{2e}
Multiply -4 times e.
x=\frac{i±\sqrt{-1-24e}}{2e}
Multiply -4e times 6.
x=\frac{i±\sqrt{-24e-1}}{2e}
Add -1 to -24e.
x=\frac{i±i\sqrt{24e+1}}{2e}
Take the square root of -1-24e.
x=\frac{i\sqrt{24e+1}+i}{2e}
Now solve the equation x=\frac{i±i\sqrt{24e+1}}{2e} when ± is plus. Add i to i\sqrt{1+24e}.
x=\frac{i\left(\sqrt{24e+1}+1\right)}{2e}
Divide i+i\sqrt{1+24e} by 2e.
x=\frac{-i\sqrt{24e+1}+i}{2e}
Now solve the equation x=\frac{i±i\sqrt{24e+1}}{2e} when ± is minus. Subtract i\sqrt{1+24e} from i.
x=\frac{i\left(\sqrt{24e+1}+1\right)}{2e} x=\frac{-i\sqrt{24e+1}+i}{2e}
The equation is now solved.
ex^{2}-ix+6=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
ex^{2}-ix+6-6=-6
Subtract 6 from both sides of the equation.
ex^{2}-ix=-6
Subtracting 6 from itself leaves 0.
\frac{ex^{2}-ix}{e}=-\frac{6}{e}
Divide both sides by e.
x^{2}+\frac{-i}{e}x=-\frac{6}{e}
Dividing by e undoes the multiplication by e.
x^{2}+\frac{-i}{e}x+\left(\frac{-i}{2e}\right)^{2}=-\frac{6}{e}+\left(\frac{-i}{2e}\right)^{2}
Divide \frac{-i}{e}, the coefficient of the x term, by 2 to get \frac{-i}{2e}. Then add the square of \frac{-i}{2e} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{-i}{e}x-\frac{1}{4e^{2}}=-\frac{6}{e}-\frac{1}{4e^{2}}
Square \frac{-i}{2e}.
x^{2}+\frac{-i}{e}x-\frac{1}{4e^{2}}=-\frac{6e+\frac{1}{4}}{e^{2}}
Add -\frac{6}{e} to -\frac{1}{4e^{2}}.
\left(x+\frac{-i}{2e}\right)^{2}=-\frac{6e+\frac{1}{4}}{e^{2}}
Factor x^{2}+\frac{-i}{e}x-\frac{1}{4e^{2}}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{-i}{2e}\right)^{2}}=\sqrt{-\frac{6e+\frac{1}{4}}{e^{2}}}
Take the square root of both sides of the equation.
x+\frac{-i}{2e}=\frac{i\sqrt{24e+1}}{2e} x+\frac{-i}{2e}=-\frac{i\sqrt{24e+1}}{2e}
Simplify.
x=\frac{i\left(\sqrt{24e+1}+1\right)}{2e} x=\frac{-i\sqrt{24e+1}+i}{2e}
Subtract \frac{-i}{2e} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}