Skip to main content
Solve for x
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{y}e^{t^{2}}\mathrm{d}t-x-1=-e^{y}
Subtract e^{y} from both sides. Anything subtracted from zero gives its negation.
-x-1=-e^{y}-\int _{0}^{y}e^{t^{2}}\mathrm{d}t
Subtract \int _{0}^{y}e^{t^{2}}\mathrm{d}t from both sides.
-x=-e^{y}-\int _{0}^{y}e^{t^{2}}\mathrm{d}t+1
Add 1 to both sides.
-x=-\int _{0}^{y}e^{t^{2}}\mathrm{d}t-e^{y}+1
Reorder the terms.
\frac{-x}{-1}=\frac{-\int _{0}^{y}e^{t^{2}}\mathrm{d}t-e^{y}+1}{-1}
Divide both sides by -1.
x=\frac{-\int _{0}^{y}e^{t^{2}}\mathrm{d}t-e^{y}+1}{-1}
Dividing by -1 undoes the multiplication by -1.
x=-\left(-\int _{0}^{y}e^{t^{2}}\mathrm{d}t-e^{y}+1\right)
Divide -\int _{0}^{y}e^{t^{2}}\mathrm{d}t-e^{y}+1 by -1.