Solve for x
x=-\frac{e^{x_{0}}-3}{1-e^{x_{0}}}
x_{0}\neq 0
Solve for x_0
x_{0}=\ln(\frac{3-x}{1-x})
x<1\text{ or }x>3
Graph
Share
Copied to clipboard
e^{x_{0}}-e^{x_{0}}x-1=2-x
Use the distributive property to multiply e^{x_{0}} by 1-x.
e^{x_{0}}-e^{x_{0}}x-1+x=2
Add x to both sides.
-e^{x_{0}}x-1+x=2-e^{x_{0}}
Subtract e^{x_{0}} from both sides.
-e^{x_{0}}x+x=2-e^{x_{0}}+1
Add 1 to both sides.
-e^{x_{0}}x+x=3-e^{x_{0}}
Add 2 and 1 to get 3.
\left(-e^{x_{0}}+1\right)x=3-e^{x_{0}}
Combine all terms containing x.
\left(1-e^{x_{0}}\right)x=3-e^{x_{0}}
The equation is in standard form.
\frac{\left(1-e^{x_{0}}\right)x}{1-e^{x_{0}}}=\frac{3-e^{x_{0}}}{1-e^{x_{0}}}
Divide both sides by -e^{x_{0}}+1.
x=\frac{3-e^{x_{0}}}{1-e^{x_{0}}}
Dividing by -e^{x_{0}}+1 undoes the multiplication by -e^{x_{0}}+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}