e ^ { x } ( y ^ { 3 } + x y ^ { 3 } + 1 ) d x + 3 y ^ { 2 } ( x e ^ { x } - 6 ) d y = 0
Solve for d (complex solution)
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{C}\text{, }&\left(y=-\sqrt[3]{x}e^{\frac{x+2\pi i}{3}}\left(x^{2}e^{x}+4xe^{x}-18\right)^{-\frac{1}{3}}\text{ or }y=i\sqrt[3]{x}e^{\frac{x}{3}+\frac{\pi i}{2}}\left(x^{2}e^{x}+4xe^{x}-18\right)^{-\frac{1}{3}}\text{ or }y=\sqrt[3]{x}e^{\frac{x+\pi i}{3}}\left(x^{2}e^{x}+4xe^{x}-18\right)^{-\frac{1}{3}}\right)\text{ and }x^{2}e^{x}+4xe^{x}-18\neq 0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&y=-\frac{\sqrt[3]{x}e^{\frac{x}{3}}}{\sqrt[3]{x^{2}e^{x}+4xe^{x}-18}}\text{ and }x^{2}e^{x}+4xe^{x}-18\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
e^{x}\left(y^{3}+xy^{3}+1\right)dx+3y^{3}\left(xe^{x}-6\right)d=0
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\left(e^{x}y^{3}+e^{x}xy^{3}+e^{x}\right)dx+3y^{3}\left(xe^{x}-6\right)d=0
Use the distributive property to multiply e^{x} by y^{3}+xy^{3}+1.
\left(e^{x}y^{3}d+e^{x}xy^{3}d+e^{x}d\right)x+3y^{3}\left(xe^{x}-6\right)d=0
Use the distributive property to multiply e^{x}y^{3}+e^{x}xy^{3}+e^{x} by d.
e^{x}y^{3}dx+e^{x}y^{3}dx^{2}+e^{x}dx+3y^{3}\left(xe^{x}-6\right)d=0
Use the distributive property to multiply e^{x}y^{3}d+e^{x}xy^{3}d+e^{x}d by x.
e^{x}y^{3}dx+e^{x}y^{3}dx^{2}+e^{x}dx+\left(3y^{3}xe^{x}-18y^{3}\right)d=0
Use the distributive property to multiply 3y^{3} by xe^{x}-6.
e^{x}y^{3}dx+e^{x}y^{3}dx^{2}+e^{x}dx+3y^{3}xe^{x}d-18y^{3}d=0
Use the distributive property to multiply 3y^{3}xe^{x}-18y^{3} by d.
4e^{x}y^{3}dx+e^{x}y^{3}dx^{2}+e^{x}dx-18y^{3}d=0
Combine e^{x}y^{3}dx and 3y^{3}xe^{x}d to get 4e^{x}y^{3}dx.
\left(4e^{x}y^{3}x+e^{x}y^{3}x^{2}+e^{x}x-18y^{3}\right)d=0
Combine all terms containing d.
\left(x^{2}y^{3}e^{x}+4xy^{3}e^{x}+xe^{x}-18y^{3}\right)d=0
The equation is in standard form.
d=0
Divide 0 by 4e^{x}y^{3}x+e^{x}y^{3}x^{2}+e^{x}x-18y^{3}.
e^{x}\left(y^{3}+xy^{3}+1\right)dx+3y^{3}\left(xe^{x}-6\right)d=0
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\left(e^{x}y^{3}+e^{x}xy^{3}+e^{x}\right)dx+3y^{3}\left(xe^{x}-6\right)d=0
Use the distributive property to multiply e^{x} by y^{3}+xy^{3}+1.
\left(e^{x}y^{3}d+e^{x}xy^{3}d+e^{x}d\right)x+3y^{3}\left(xe^{x}-6\right)d=0
Use the distributive property to multiply e^{x}y^{3}+e^{x}xy^{3}+e^{x} by d.
e^{x}y^{3}dx+e^{x}y^{3}dx^{2}+e^{x}dx+3y^{3}\left(xe^{x}-6\right)d=0
Use the distributive property to multiply e^{x}y^{3}d+e^{x}xy^{3}d+e^{x}d by x.
e^{x}y^{3}dx+e^{x}y^{3}dx^{2}+e^{x}dx+\left(3y^{3}xe^{x}-18y^{3}\right)d=0
Use the distributive property to multiply 3y^{3} by xe^{x}-6.
e^{x}y^{3}dx+e^{x}y^{3}dx^{2}+e^{x}dx+3y^{3}xe^{x}d-18y^{3}d=0
Use the distributive property to multiply 3y^{3}xe^{x}-18y^{3} by d.
4e^{x}y^{3}dx+e^{x}y^{3}dx^{2}+e^{x}dx-18y^{3}d=0
Combine e^{x}y^{3}dx and 3y^{3}xe^{x}d to get 4e^{x}y^{3}dx.
\left(4e^{x}y^{3}x+e^{x}y^{3}x^{2}+e^{x}x-18y^{3}\right)d=0
Combine all terms containing d.
\left(x^{2}y^{3}e^{x}+4xy^{3}e^{x}+xe^{x}-18y^{3}\right)d=0
The equation is in standard form.
d=0
Divide 0 by 4e^{x}y^{3}x+e^{x}y^{3}x^{2}+e^{x}x-18y^{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}