Solve for k
k=-\frac{ay}{e^{ax}}
Share
Copied to clipboard
ke^{2ax}=e^{ax}\frac{\mathrm{d}}{\mathrm{d}x}(y)-yae^{ax}
Swap sides so that all variable terms are on the left hand side.
ke^{2ax}=e^{ax}\frac{\mathrm{d}}{\mathrm{d}x}(y)-aye^{ax}
Reorder the terms.
e^{2ax}k=-aye^{ax}
The equation is in standard form.
\frac{e^{2ax}k}{e^{2ax}}=-\frac{aye^{ax}}{e^{2ax}}
Divide both sides by e^{2ax}.
k=-\frac{aye^{ax}}{e^{2ax}}
Dividing by e^{2ax} undoes the multiplication by e^{2ax}.
k=-\frac{ay}{e^{ax}}
Divide -aye^{ax} by e^{2ax}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}