Skip to main content
Solve for V_0
Tick mark Image
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

V_{0}t+\frac{1}{2}at^{2}=e
Swap sides so that all variable terms are on the left hand side.
V_{0}t=e-\frac{1}{2}at^{2}
Subtract \frac{1}{2}at^{2} from both sides.
tV_{0}=-\frac{at^{2}}{2}+e
The equation is in standard form.
\frac{tV_{0}}{t}=\frac{-\frac{at^{2}}{2}+e}{t}
Divide both sides by t.
V_{0}=\frac{-\frac{at^{2}}{2}+e}{t}
Dividing by t undoes the multiplication by t.
V_{0}=-\frac{at}{2}+\frac{e}{t}
Divide e-\frac{at^{2}}{2} by t.
V_{0}t+\frac{1}{2}at^{2}=e
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}at^{2}=e-V_{0}t
Subtract V_{0}t from both sides.
\frac{t^{2}}{2}a=e-V_{0}t
The equation is in standard form.
\frac{2\times \frac{t^{2}}{2}a}{t^{2}}=\frac{2\left(e-V_{0}t\right)}{t^{2}}
Divide both sides by \frac{1}{2}t^{2}.
a=\frac{2\left(e-V_{0}t\right)}{t^{2}}
Dividing by \frac{1}{2}t^{2} undoes the multiplication by \frac{1}{2}t^{2}.