Solve for V_0
V_{0}=-\frac{at}{2}+\frac{e}{t}
t\neq 0
Solve for a
a=-\frac{2\left(V_{0}t-e\right)}{t^{2}}
t\neq 0
Share
Copied to clipboard
V_{0}t+\frac{1}{2}at^{2}=e
Swap sides so that all variable terms are on the left hand side.
V_{0}t=e-\frac{1}{2}at^{2}
Subtract \frac{1}{2}at^{2} from both sides.
tV_{0}=-\frac{at^{2}}{2}+e
The equation is in standard form.
\frac{tV_{0}}{t}=\frac{-\frac{at^{2}}{2}+e}{t}
Divide both sides by t.
V_{0}=\frac{-\frac{at^{2}}{2}+e}{t}
Dividing by t undoes the multiplication by t.
V_{0}=-\frac{at}{2}+\frac{e}{t}
Divide e-\frac{at^{2}}{2} by t.
V_{0}t+\frac{1}{2}at^{2}=e
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}at^{2}=e-V_{0}t
Subtract V_{0}t from both sides.
\frac{t^{2}}{2}a=e-V_{0}t
The equation is in standard form.
\frac{2\times \frac{t^{2}}{2}a}{t^{2}}=\frac{2\left(e-V_{0}t\right)}{t^{2}}
Divide both sides by \frac{1}{2}t^{2}.
a=\frac{2\left(e-V_{0}t\right)}{t^{2}}
Dividing by \frac{1}{2}t^{2} undoes the multiplication by \frac{1}{2}t^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}