Solve for Q_c
Q_{c}=\left(1-e\right)Q_{h}
Q_{h}\neq 0
Solve for Q_h
Q_{h}=-\frac{Q_{c}}{e-1}
Q_{c}\neq 0
Share
Copied to clipboard
eQ_{h}=Q_{h}-Q_{c}
Multiply both sides of the equation by Q_{h}.
Q_{h}-Q_{c}=eQ_{h}
Swap sides so that all variable terms are on the left hand side.
-Q_{c}=eQ_{h}-Q_{h}
Subtract Q_{h} from both sides.
\frac{-Q_{c}}{-1}=\frac{\left(e-1\right)Q_{h}}{-1}
Divide both sides by -1.
Q_{c}=\frac{\left(e-1\right)Q_{h}}{-1}
Dividing by -1 undoes the multiplication by -1.
Q_{c}=Q_{h}-eQ_{h}
Divide Q_{h}\left(e-1\right) by -1.
eQ_{h}=Q_{h}-Q_{c}
Variable Q_{h} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by Q_{h}.
eQ_{h}-Q_{h}=-Q_{c}
Subtract Q_{h} from both sides.
\left(e-1\right)Q_{h}=-Q_{c}
Combine all terms containing Q_{h}.
\frac{\left(e-1\right)Q_{h}}{e-1}=-\frac{Q_{c}}{e-1}
Divide both sides by e-1.
Q_{h}=-\frac{Q_{c}}{e-1}
Dividing by e-1 undoes the multiplication by e-1.
Q_{h}=-\frac{Q_{c}}{e-1}\text{, }Q_{h}\neq 0
Variable Q_{h} cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}