Verify
false
Share
Copied to clipboard
e=1+\frac{1}{1}+1\times \frac{1}{2!}+\frac{1}{3!}
The factorial of 1 is 1.
e=1+1+1\times \frac{1}{2!}+\frac{1}{3!}
Anything divided by one gives itself.
e=2+1\times \frac{1}{2!}+\frac{1}{3!}
Add 1 and 1 to get 2.
e=2+1\times \frac{1}{2}+\frac{1}{3!}
The factorial of 2 is 2.
e=2+\frac{1}{2}+\frac{1}{3!}
Multiply 1 and \frac{1}{2} to get \frac{1}{2}.
e=\frac{4}{2}+\frac{1}{2}+\frac{1}{3!}
Convert 2 to fraction \frac{4}{2}.
e=\frac{4+1}{2}+\frac{1}{3!}
Since \frac{4}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
e=\frac{5}{2}+\frac{1}{3!}
Add 4 and 1 to get 5.
e=\frac{5}{2}+\frac{1}{6}
The factorial of 3 is 6.
e=\frac{15}{6}+\frac{1}{6}
Least common multiple of 2 and 6 is 6. Convert \frac{5}{2} and \frac{1}{6} to fractions with denominator 6.
e=\frac{15+1}{6}
Since \frac{15}{6} and \frac{1}{6} have the same denominator, add them by adding their numerators.
e=\frac{16}{6}
Add 15 and 1 to get 16.
e=\frac{8}{3}
Reduce the fraction \frac{16}{6} to lowest terms by extracting and canceling out 2.
\text{false}
Compare e and \frac{8}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}