d y = - 7 x - 6
Solve for d (complex solution)
\left\{\begin{matrix}d=-\frac{7x+6}{y}\text{, }&y\neq 0\\d\in \mathrm{C}\text{, }&x=-\frac{6}{7}\text{ and }y=0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=-\frac{7x+6}{y}\text{, }&y\neq 0\\d\in \mathrm{R}\text{, }&x=-\frac{6}{7}\text{ and }y=0\end{matrix}\right.
Solve for x
x=\frac{-dy-6}{7}
Graph
Share
Copied to clipboard
yd=-7x-6
The equation is in standard form.
\frac{yd}{y}=\frac{-7x-6}{y}
Divide both sides by y.
d=\frac{-7x-6}{y}
Dividing by y undoes the multiplication by y.
d=-\frac{7x+6}{y}
Divide -7x-6 by y.
yd=-7x-6
The equation is in standard form.
\frac{yd}{y}=\frac{-7x-6}{y}
Divide both sides by y.
d=\frac{-7x-6}{y}
Dividing by y undoes the multiplication by y.
d=-\frac{7x+6}{y}
Divide -7x-6 by y.
-7x-6=dy
Swap sides so that all variable terms are on the left hand side.
-7x=dy+6
Add 6 to both sides.
\frac{-7x}{-7}=\frac{dy+6}{-7}
Divide both sides by -7.
x=\frac{dy+6}{-7}
Dividing by -7 undoes the multiplication by -7.
x=\frac{-dy-6}{7}
Divide dy+6 by -7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}