d y = \int ( 2 x ^ { 3 } + 3 x - 2 x ^ { 3 } ) d x
Solve for d
\left\{\begin{matrix}d=\frac{3x^{2}}{2y}+\frac{С}{y}\text{, }&y\neq 0\\d\in \mathrm{R}\text{, }&С=\frac{3x^{2}}{2}\text{ and }y=0\end{matrix}\right.
Solve for y
\left\{\begin{matrix}y=\frac{3x^{2}}{2d}+\frac{С}{d}\text{, }&d\neq 0\\y\in \mathrm{R}\text{, }&С=\frac{3x^{2}}{2}\text{ and }d=0\end{matrix}\right.
Share
Copied to clipboard
dy=\int 3x\mathrm{d}x
Combine 2x^{3} and -2x^{3} to get 0.
yd=\frac{3x^{2}}{2}+С
The equation is in standard form.
\frac{yd}{y}=\frac{\frac{3x^{2}}{2}+С}{y}
Divide both sides by y.
d=\frac{\frac{3x^{2}}{2}+С}{y}
Dividing by y undoes the multiplication by y.
dy=\int 3x\mathrm{d}x
Combine 2x^{3} and -2x^{3} to get 0.
dy=\frac{3x^{2}}{2}+С
The equation is in standard form.
\frac{dy}{d}=\frac{\frac{3x^{2}}{2}+С}{d}
Divide both sides by d.
y=\frac{\frac{3x^{2}}{2}+С}{d}
Dividing by d undoes the multiplication by d.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}