d y = \frac { d } { 1 } ( t ( t + 1 ) ( t + 2 ) )
Solve for d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&y=t\left(t+1\right)\left(t+2\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
dy=dt\left(t+1\right)\left(t+2\right)
Anything divided by one gives itself.
dy=\left(dt^{2}+dt\right)\left(t+2\right)
Use the distributive property to multiply dt by t+1.
dy=dt^{3}+3dt^{2}+2dt
Use the distributive property to multiply dt^{2}+dt by t+2 and combine like terms.
dy-dt^{3}=3dt^{2}+2dt
Subtract dt^{3} from both sides.
dy-dt^{3}-3dt^{2}=2dt
Subtract 3dt^{2} from both sides.
dy-dt^{3}-3dt^{2}-2dt=0
Subtract 2dt from both sides.
\left(y-t^{3}-3t^{2}-2t\right)d=0
Combine all terms containing d.
d=0
Divide 0 by y-t^{3}-3t^{2}-2t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}