d y = \frac { 2 C } { d } y d t
Solve for C (complex solution)
\left\{\begin{matrix}C=\frac{d}{2t}\text{, }&t\neq 0\text{ and }d\neq 0\\C\in \mathrm{C}\text{, }&y=0\text{ and }d\neq 0\end{matrix}\right.
Solve for C
\left\{\begin{matrix}C=\frac{d}{2t}\text{, }&t\neq 0\text{ and }d\neq 0\\C\in \mathrm{R}\text{, }&y=0\text{ and }d\neq 0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=2Ct\text{, }&t\neq 0\text{ and }C\neq 0\\d\neq 0\text{, }&y=0\end{matrix}\right.
Graph
Share
Copied to clipboard
dyd=2Cydt
Multiply both sides of the equation by d.
d^{2}y=2Cydt
Multiply d and d to get d^{2}.
2Cydt=d^{2}y
Swap sides so that all variable terms are on the left hand side.
2dtyC=yd^{2}
The equation is in standard form.
\frac{2dtyC}{2dty}=\frac{yd^{2}}{2dty}
Divide both sides by 2ydt.
C=\frac{yd^{2}}{2dty}
Dividing by 2ydt undoes the multiplication by 2ydt.
C=\frac{d}{2t}
Divide d^{2}y by 2ydt.
dyd=2Cydt
Multiply both sides of the equation by d.
d^{2}y=2Cydt
Multiply d and d to get d^{2}.
2Cydt=d^{2}y
Swap sides so that all variable terms are on the left hand side.
2dtyC=yd^{2}
The equation is in standard form.
\frac{2dtyC}{2dty}=\frac{yd^{2}}{2dty}
Divide both sides by 2ydt.
C=\frac{yd^{2}}{2dty}
Dividing by 2ydt undoes the multiplication by 2ydt.
C=\frac{d}{2t}
Divide d^{2}y by 2ydt.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}