d y = \frac { \arctan x } { ( 1 + x ^ { 2 } ) } d x
Solve for d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&y=\frac{x\arctan(x)}{x^{2}+1}\end{matrix}\right.
Graph
Share
Copied to clipboard
dy\left(x^{2}+1\right)=\arctan(x)dx
Multiply both sides of the equation by x^{2}+1.
dyx^{2}+dy=\arctan(x)dx
Use the distributive property to multiply dy by x^{2}+1.
dyx^{2}+dy-\arctan(x)dx=0
Subtract \arctan(x)dx from both sides.
-dx\arctan(x)+dyx^{2}+dy=0
Reorder the terms.
\left(-x\arctan(x)+yx^{2}+y\right)d=0
Combine all terms containing d.
d=0
Divide 0 by -x\arctan(x)+yx^{2}+y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}