d y + y = 3
Solve for d
d=-1+\frac{3}{y}
y\neq 0
Solve for y
y=\frac{3}{d+1}
d\neq -1
Graph
Share
Copied to clipboard
dy=3-y
Subtract y from both sides.
yd=3-y
The equation is in standard form.
\frac{yd}{y}=\frac{3-y}{y}
Divide both sides by y.
d=\frac{3-y}{y}
Dividing by y undoes the multiplication by y.
d=-1+\frac{3}{y}
Divide 3-y by y.
\left(d+1\right)y=3
Combine all terms containing y.
\frac{\left(d+1\right)y}{d+1}=\frac{3}{d+1}
Divide both sides by d+1.
y=\frac{3}{d+1}
Dividing by d+1 undoes the multiplication by d+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}