d x _ { 13 } = \sqrt { ( 5 ) ^ { 2 } + ( - 12 ) ^ { 2 } }
Solve for d
d=\frac{13}{x_{13}}
x_{13}\neq 0
Solve for x_13
x_{13}=\frac{13}{d}
d\neq 0
Share
Copied to clipboard
dx_{13}=\sqrt{25+\left(-12\right)^{2}}
Calculate 5 to the power of 2 and get 25.
dx_{13}=\sqrt{25+144}
Calculate -12 to the power of 2 and get 144.
dx_{13}=\sqrt{169}
Add 25 and 144 to get 169.
dx_{13}=13
Calculate the square root of 169 and get 13.
x_{13}d=13
The equation is in standard form.
\frac{x_{13}d}{x_{13}}=\frac{13}{x_{13}}
Divide both sides by x_{13}.
d=\frac{13}{x_{13}}
Dividing by x_{13} undoes the multiplication by x_{13}.
dx_{13}=\sqrt{25+\left(-12\right)^{2}}
Calculate 5 to the power of 2 and get 25.
dx_{13}=\sqrt{25+144}
Calculate -12 to the power of 2 and get 144.
dx_{13}=\sqrt{169}
Add 25 and 144 to get 169.
dx_{13}=13
Calculate the square root of 169 and get 13.
\frac{dx_{13}}{d}=\frac{13}{d}
Divide both sides by d.
x_{13}=\frac{13}{d}
Dividing by d undoes the multiplication by d.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}