d x = \sqrt[ 3 ] { t ( t ^ { 2 } + 4 ) }
Solve for d
\left\{\begin{matrix}d=\frac{\sqrt[3]{t\left(t^{2}+4\right)}}{x}\text{, }&x\neq 0\\d\in \mathrm{R}\text{, }&t=0\text{ and }x=0\end{matrix}\right.
Solve for t
t=\frac{\sqrt[3]{3}\times 2^{\frac{2}{3}}\left(\sqrt[3]{\sqrt{3\left(27\left(dx\right)^{6}+256\right)}+9\left(dx\right)^{3}}+\sqrt[3]{-\sqrt{3\left(27\left(dx\right)^{6}+256\right)}+9\left(dx\right)^{3}}\right)}{6}
Graph
Share
Copied to clipboard
dx=\sqrt[3]{t^{3}+4t}
Use the distributive property to multiply t by t^{2}+4.
xd=\sqrt[3]{t^{3}+4t}
The equation is in standard form.
\frac{xd}{x}=\frac{\sqrt[3]{t\left(t^{2}+4\right)}}{x}
Divide both sides by x.
d=\frac{\sqrt[3]{t\left(t^{2}+4\right)}}{x}
Dividing by x undoes the multiplication by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}